Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Environ Manage ; 354: 120459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402788

RESUMO

In recent years, there has been a marked increase in the production of excess sludge. Chain-elongation (CE) fermentation presents a promising approach for carbon resource recovery from sludge, enabling the transformation of carbon into medium-chain fatty acids (MCFAs). However, the impact of sulfate, commonly presents in sludge, on the CE process remains largely unexplored. In this study, batch tests for CE process of sludge anaerobic fermentation liquid (SAFL) under different SCOD/SO42- ratios were performed. The moderate sulfate reduction under the optimum SCOD/SO42- of 20:1 enhanced the n-caproate production, giving the maximum n-caproate concentration, selectivity and production rate of 5.49 g COD/L, 21.4% and 4.87 g COD/L/d, respectively. The excessive sulfate reduction under SCOD/SO42- ≤ 5 completely inhibited the CE process, resulting in almost no n-caproate generation. The variations in n-caproate production under different conditions of SCOD/SO42- were all well fitted with the modified Gompertz kinetic model. Alcaligenes and Ruminococcaceae_UCG-014 were the dominant genus-level biomarkers under moderate sulfate reduction (SCOD/SO42- = 20), which enhanced the n-caproate production by increasing the generation of acetyl-CoA and the hydrolysis of difficult biodegradable substances in SAFL. The findings presented in this work elucidate a strategy and provide a theoretical framework for the further enhancement of MCFAs production from excess sludge.


Assuntos
Caproatos , Esgotos , Fermentação , Anaerobiose , Ácidos Graxos Voláteis , Ácidos Graxos , Carbono
2.
RNA Biol ; 19(1): 636-649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491906

RESUMO

Protein synthesis is energetically expensive and its rate is influenced by factors such as cell type and environment. Suppression of translation is a canonical response to stressful changes in the cellular environment. In particular, inhibition of the initiation step of translation has been highlighted as the key control step in stress-induced translational suppression as mechanisms that quickly suppress initiation are well-conserved. However, cells have evolved complex regulatory means to control translation apart from initiation. Here, we examine the role of the elongation step of translation in yeast subjected to acute glucose deprivation. The use of ribosome profiling and in vivo reporter assays demonstrated elongation rates slow progressively following glucose removal. We observed that ribosome distribution broadly shifts towards the downstream ends of transcripts after both acute and gradual glucose deprivation but not in response to other stressors. Additionally, on assessed mRNAs, a correlation existed between ribosome occupancy and protein production pre-stress but was lost after stress. These results indicate that stress-induced elongation regulation causes ribosomes to slow down and build up on a considerable proportion of the transcriptome in response to glucose withdrawal. Finally, we report ribosomes that built up along transcripts are competent to resume elongation and complete protein synthesis after readdition of glucose to starved cells. This suggests that yeast has evolved mechanisms to slow translation elongation in response to glucose starvation which do not preclude continuation of protein production from those ribosomes, thereby averting a need for new initiation events to take place to synthesize proteins.Abbreviations: AUG: start codon, bp: base pair(s), CDS: coding sequence, CHX: cycloheximide, eEF2: eukaryotic elongation factor 2, LTM: lactimidomycin, nt: nucleotide, PGK1: 3-phosphoglycerate kinase, ribosomal biogenesis: ribi, RO: ribosome occupancy, RPF: ribosome protected fragment, TE: translational efficiency.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Glucose , Elongação Traducional da Cadeia Peptídica , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Surg Res ; 195(1): 344-50, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25586332

RESUMO

BACKGROUND: Microskin autografts with conventional wrap and compression are used extensively in the treatment of skin and tissue defects. This comparative study aimed at investigation of the clinical application of negative pressure wound therapy (NPWT) in combination with microskin autografts for repair of acute and chronic wounds. METHODS: A prospective case-control study was performed from December 1, 2010-December 31, 2013 in Changhai Hospital, Shanghai. We compared a study group of patients received microskin autografting covered by NPWT with that of a control group of patients received microskin autografting covered by a conventional gauze. RESULTS: A total of 81 patients were in this study, 27 patients were allocated to the study group and 54 patients to the control group. The study group exhibited significant low infection rate and pain score during removal of inner layer at first dressing change after skin grafting compared with those of the control group (P < 0.05). The time interval between skin grafting and first postoperative change was longer in the study group than that in the control group (P < 0.01), the study group showed a significant shorter 95% wound healing time (P < 0.05), and survival rate of microskin autografts in the study group was higher than that in the control group (P < 0.05). CONCLUSIONS: NPWT is beneficial for wound closure after microskin autografts, which prolongs the interval between skin transplantation and first postoperative dressing change, reduces pain during removal of inner layer dressing, increases skin graft survival rate, and shortens wound healing time. Therefore, NPWT can be recommended for repair of acute and chronic wounds with microskin autografts.


Assuntos
Tratamento de Ferimentos com Pressão Negativa , Transplante de Pele , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Transplante Autólogo/métodos
4.
J Surg Res ; 187(2): 640-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24332550

RESUMO

BACKGROUND: Smad3 is a principal intracellular mediator of signaling for transforming growth factor ß, a cytokine involved in pleiotropic pathophysiological processes including inflammation and immunity. The function of Smad3 in regulating inducible nitric oxide synthase (iNOS) expression and septic shock has not been characterized. METHODS: Smad3(-/-) (referred hereafter as KO) and wild-type (WT) mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce the septic hypotension. Mortality, blood pressure, and plasma levels of nitrite were measured. The iNOS messenger RNA and protein levels in lung, kidney, and spleen were also analyzed. RESULTS: Mice lacking functional Smad3 respond to LPS with greater mortality than their WT littermates. The high mortality of KO mice is accompanied by enhanced hypotension after intraperitoneal injection of LPS. Both KO and WT mice displayed an increase in plasma nitrite during the experimental period; however, LPS administration caused more dramatic changes in KO mice than WT mice. Likewise, the iNOS messenger RNA and protein levels in lung, kidney, and spleen were more strongly increased in KO mice than in WT mice after LPS administration. CONCLUSIONS: Defects in the Smad3 gene may increase susceptibility to the development of septic hypotension because of enhanced iNOS production.


Assuntos
Endotoxemia/metabolismo , Hipotensão/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Sepse/metabolismo , Proteína Smad3/genética , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/mortalidade , Feminino , Hipotensão/induzido quimicamente , Hipotensão/mortalidade , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/metabolismo , Sepse/induzido quimicamente , Sepse/mortalidade , Proteína Smad3/deficiência
5.
Front Med (Lausanne) ; 11: 1354439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390567

RESUMO

Background: Merkel cell carcinoma (MCC) is a rare type of invasive neuroendocrine skin malignancy with high mortality. However, with years of follow-up, what is the actual survival rate and how can we continually assess an individual's prognosis? The purpose of this study was to estimate conditional survival (CS) for MCC patients and establish a novel CS-based nomogram model. Methods: This study collected MCC patients from the Surveillance, Epidemiology, and End Results (SEER) database and divided these patients into training and validation groups at the ratio of 7:3. CS refers to the probability of survival for a specific timeframe (y years), based on the patient's survival after the initial diagnosis (x years). Then, we attempted to describe the CS pattern of MCCs. The Least absolute shrinkage and selection operator (LASSO) regression was employed to screen predictive factors. The Multivariate Cox regression analysis was applied to demonstrate these predictors' effect on overall survival and establish a novel CS-based nomogram. Results: A total of 3,843 MCC patients were extracted from the SEER database. Analysis of the CS revealed that the 7-year survival rate of MCC patients progressively increased with each subsequent year of survival. The rates progressed from an initial 41-50%, 61, 70, 78, 85%, and finally to 93%. And the improvement of survival rate was nonlinear. The LASSO regression identified five predictors including patient age, sex, AJCC stage, surgery and radiotherapy as predictors for CS-nomogram development. And this novel survival prediction model was successfully validated with good predictive performance. Conclusion: CS of MCC patients was dynamic and increased with time since the initial diagnosis. Our newly established CS-based nomogram can provide a dynamic estimate of survival, which has implications for follow-up guidelines and survivorship planning, enabling clinicians to guide treatment for these patients better.

6.
Bioresour Technol ; 406: 130937, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852892

RESUMO

Thermal hydrolyzed sludge (THS) exhibits considerable promise in generating medium-chain fatty acids (MCFAs) through chain elongation (CE) technology. This study developed a novel continuous CE process using THS as the substrate, achieving an optimal ethanol loading rate (5.8 g COD/L/d) and stable MCFA production at 10.9 g COD/L, with a rate of 3.6 g COD/L/d. The MCFAs primarily comprised n-caproate and n-caprylate, representing 41.5 % and 54.3 % of the total MCFAs, respectively. Utilization efficiencies for ethanol and acetate were nearly complete at 100 % and 92.8 %, respectively. Key microbial taxa identified under these optimal conditions included Alcaligenes, SRB2, Sporanaerobacter, and Kurthia, which were instrumental in critical pathways such as the generation of acetyl-CoA, the initial carboxylation of acetyl-CoA, the fatty acid biosynthesis cycle, and energy metabolism. This research provides a theoretical and technical blueprint for converting waste sludge into valuable MCFAs, promoting sustainable waste-to-resource strategies.


Assuntos
Carbono , Ácidos Graxos , Esgotos , Esgotos/microbiologia , Carbono/metabolismo , Ácidos Graxos/metabolismo , Etanol/metabolismo , Bactérias/metabolismo , Hidrólise , Reatores Biológicos
7.
Front Bioeng Biotechnol ; 12: 1347995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628439

RESUMO

The tissues or organs derived decellularized extracellular matrix carry immunogenicity and the risk of pathogen transmission, resulting in limited therapeutic effects. The cell derived dECM cultured in vitro can address these potential risks, but its impact on wound remodeling is still unclear. This study aimed to explore the role of decellularized extracellular matrix (dECM) extracted from adipose derived stem cells (ADSCs) in skin regeneration. Methods: ADSCs were extracted from human adipose tissue. Then we cultivated adipose-derived stem cell cells and decellularized ADSC-dECM for freeze-drying. Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and mass spectrometry (MS) were conducted to analyzed the main protein components in ADSC-dECM. The cell counting assay (CCK-8) and scratch assay were used to explore the effects of different concentrations of ADSC-dECM on the proliferation and migration of human keratinocytes cells (HaCaT), human umbilical vein endothelia cells (HUVEC) and human fibroblasts (HFB), respectively. Moreover, we designed a novel ADSC-dECM-CMC patch which used carboxymethylcellulose (CMC) to load with ADSC-dECM; and we further investigated its effect on a mouse full thickness skin wound model. Results: ADSC-dECM was obtained after decellularization of in vitro cultured human ADSCs. Western blot, ELISA and mass spectrometry results showed that ADSC-dECM contained various bioactive molecules, including collagen, elastin, laminin, and various growth factors. CCK-8 and scratch assay showed that ADSC-dECM treatment could significantly promote the proliferation and migration of HaCaT, human umbilical vein endothelia cells, and human fibroblasts, respectively. To evaluate the therapeutic effect on wound healing in vivo, we developed a novel ADSC-dECM-CMC patch and transplanted it into a mouse full-thickness skin wound model. And we found that ADSC-dECM-CMC patch treatment significantly accelerated the wound closure with time. Further histology and immunohistochemistry indicated that ADSC-dECM-CMC patch could promote tissue regeneration, as confirmed via enhanced angiogenesis and high cell proliferative activity. Conclusion: In this study, we developed a novel ADSC-dECM-CMC patch containing multiple bioactive molecules and exhibiting good biocompatibility for skin reconstruction and regeneration. This patch provides a new approach for the use of adipose stem cells in skin tissue engineering.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39058923

RESUMO

Very recently, the poor contact between the perovskite and carrier selective layer has been regarded as a critical issue for improving the performance and stability of perovskite solar cells (PSCs). In this study, the buried interface of regularly structured PSCs has been targeted. Glutathione-coated gold nanoparticles (GSH-AuNPs) are used as double-sided passivating agents to improve the quality of the perovskite films. It has been demonstrated that the GSH-AuNPs interact strongly with the SnO2 underlayer and the upper perovskite layer, significantly reducing the defect densities of this interface. Thus, the power conversion efficiency (PCE) of the PSCs can be increased from 20.46% (control, 19.38%, IPCE corrected) to 22.22% (GSH-AuNPs modified, 21.10%, IPCE corrected) with notable enhancement in Voc and FF. Moreover, the strong interaction between the C═O groups of GSH-AuNPs and the undercoordinated Pb2+ species of the perovskite films inhibits the formation of metallic Pb0. As a result, the unencapsulated GSH-AuNPs-modified devices retained 80% of their initial PCEs after 1000 h at ambient conditions, with a relative humidity (RH) of 60 ± 5%. UV-resistant PSCs have also been demonstrated after introducing GSH-AuNPs. Therefore, our findings demonstrate the bidirectional therapy strategy as a feasible approach for achieving efficient and UV-resistant PSCs.

9.
Front Cardiovasc Med ; 11: 1342586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601045

RESUMO

Objectives: Prolonged intubation (PI) is a frequently encountered severe complication among patients following cardiac surgery (CS). Solely concentrating on preoperative data, devoid of sufficient consideration for the ongoing impact of surgical, anesthetic, and cardiopulmonary bypass procedures on subsequent respiratory system function, could potentially compromise the predictive accuracy of disease prognosis. In response to this challenge, we formulated and externally validated an intelligible prediction model tailored for CS patients, leveraging both preoperative information and early intensive care unit (ICU) data to facilitate early prophylaxis for PI. Methods: We conducted a retrospective cohort study, analyzing adult patients who underwent CS and utilizing data from two publicly available ICU databases, namely, the Medical Information Mart for Intensive Care and the eICU Collaborative Research Database. PI was defined as necessitating intubation for over 24 h. The predictive model was constructed using multivariable logistic regression. External validation of the model's predictive performance was conducted, and the findings were elucidated through visualization techniques. Results: The incidence rates of PI in the training, testing, and external validation cohorts were 11.8%, 12.1%, and 17.5%, respectively. We identified 11 predictive factors associated with PI following CS: plateau pressure [odds ratio (OR), 1.133; 95% confidence interval (CI), 1.111-1.157], lactate level (OR, 1.131; 95% CI, 1.067-1.2), Charlson Comorbidity Index (OR, 1.166; 95% CI, 1.115-1.219), Sequential Organ Failure Assessment score (OR, 1.096; 95% CI, 1.061-1.132), central venous pressure (OR, 1.052; 95% CI, 1.033-1.073), anion gap (OR, 1.075; 95% CI, 1.043-1.107), positive end-expiratory pressure (OR, 1.087; 95% CI, 1.047-1.129), vasopressor usage (OR, 1.521; 95% CI, 1.23-1.879), Visual Analog Scale score (OR, 0.928; 95% CI, 0.893-0.964), pH value (OR, 0.757; 95% CI, 0.629-0.913), and blood urea nitrogen level (OR, 1.011; 95% CI, 1.003-1.02). The model exhibited an area under the receiver operating characteristic curve (AUROC) of 0.853 (95% CI, 0.840-0.865) in the training cohort, 0.867 (95% CI, 0.853-0.882) in the testing cohort, and 0.704 (95% CI, 0.679-0.727) in the external validation cohort. Conclusions: Through multicenter internal and external validation, our model, which integrates early ICU data and preoperative information, exhibited outstanding discriminative capability. This integration allows for the accurate assessment of PI risk in the initial phases following CS, facilitating timely interventions to mitigate adverse outcomes.

10.
Adv Mater ; 36(29): e2401145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692574

RESUMO

Photopyroptosis is an emerging research branch of photodynamic therapy (PDT), whereas there remains a lack of molecular structural principles to fabricate photosensitizers for triggering a highly efficient pyroptosis. Herein, a general and rational structural design principle to implement this hypothesis, is proposed. The principle relies on the clamping of cationic moieties (e.g., pyridinium, imidazolium) onto one photosensitive core to facilitate a considerable mitochondrial targeting (both of the inner and the outer membranes) of the molecules, thus maximizing the photogenerated reactive oxygen species (ROS) at the specific site to trigger the gasdermin E-mediated pyroptosis. Through this design, the pyroptotic trigger can be achieved in a minimum of 10 s of irradiation with a substantially low light dosage (0.4 J cm⁻2), compared to relevant work reported (up to 60 J cm⁻2). Moreover, immunotherapy with high tumor inhibition efficiency is realized by applying the synthetic molecules alone. This structural paradigm is valuable for deepening the understanding of PDT (especially the mitochondrial-targeted PDT) from the perspective of pyroptosis, toward the future development of the state-of-the-art form of PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Piroptose , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Piroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Luz
11.
Immunology ; 140(2): 250-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23777345

RESUMO

Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC.


Assuntos
Anexina A1/biossíntese , Dexametasona/farmacologia , Eicosanoides/metabolismo , Glucocorticoides/farmacologia , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos/metabolismo , Animais , Western Blotting , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
12.
Neural Netw ; 166: 595-608, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586259

RESUMO

In this paper, N-cluster games with coupling and private constraints are studied, where each player's cost function is nonsmooth and depends on the actions of all players. In order to seek the generalized Nash equilibrium (GNE) of the nonsmooth N-cluster games, a distributed seeking neurodynamic approach with two-time-scale structure is proposed. An adaptive leader-following consensus technique is adapted to dynamically adjust parameters according to the degree of consensus violation, so as to quickly obtain accurate estimation information of other players' actions which facilitates the evaluation of its own cost. Benefitting from the unique structure of the approach based on primal dual and adaptive penalty methods, the players' actions enter the constraints while completing the seeking for GNE. As a result, the neurodynamic approach is completely distributed, and prior estimation of penalty parameters is avoided. Finally, two engineering examples of power system game and company capacity allocation verify the effectiveness and feasibility of the neurodynamic approach.


Assuntos
Algoritmos , Consenso
13.
Burns ; 49(1): 169-181, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35361497

RESUMO

To overcome limited donor-site availability in patients with extensive burns, split-thickness skin grafts (STSGs) are sometimes minced into micrografts (MGs) to improve the expansion ratio of the grafts, but this may reduce wound healing. We aimed to produce a novel hydrogel as an overlay of minced STSGs to improve wound healing. The new hydrogel was produced using recombinant human collagen type III powder as a raw material. Morphological and physical characteristics (degradation and swelling rate), cytotoxicity, and cell viability of the hydrogel were evaluated in vitro. A full-thickness in vivo skin defect model was constructed with male Sprague-Dawley rats. The animals were randomly assigned to experimental and control groups in which the new hydrogel and Vaseline gauze, respectively, were overlaid on minced STSGs to repair and regenerate skin wound. The healing rates and recovery status were compared between the two groups. The hydrogels exhibited good water retention properties and a suitable degradation rate, which can promote the proliferation and migration of wound healing-related cells in vitro. Further, using the hydrogel as an overlay accelerated wound closure and angiogenesis, increased dermal tissue and basement membrane formation, enhanced collagen synthesis and wound healing-related growth factor expression, while reducing scar formation compared to the Vaseline gauze group. In conclusion, the novel, low-cost recombinant human collagen hydrogel can accelerate wound closure and improve wound healing when used as an overlay of minced STSGs. The new hydrogel could become a new treatment option for traumatic skin wounds caused by burns or injuries.


Assuntos
Queimaduras , Lesões dos Tecidos Moles , Animais , Humanos , Masculino , Ratos , Queimaduras/cirurgia , Colágeno , Hidrogéis/farmacologia , Ratos Sprague-Dawley , Pele/lesões , Transplante de Pele , Lesões dos Tecidos Moles/cirurgia , Cicatrização
14.
Water Res ; 243: 120434, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573843

RESUMO

In this study, a carboxylate platform of hyperthermophilic (70 â„ƒ) anaerobic fermentation (HAF) for short chain fatty acids (SCFAs) production from thermal hydrolyzed sludge (THS) was established. The long-term performance for SCFAs production and the microbial communities of this HAF under different SRTs were systematically investigated. Under the optimum SRT of 3 d, the HAF had the highest acetate production rate of 1.12 g COD/L/d which accounted for 60% in SCFAs. It also rendered a good performance in SCFAs production, with concentration, production rate and yield of 6.61 g COD/L, 1.86 g COD/L/d and 324 g COD/kg VSSin, respectively. Nearly no biogas produced from this system, which reduced the loss of carbon sources from the system. This was due to the inhibition of methanogenesis by the hyperthermophilic condition and the high content of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN). Tepidimicrobium, Bhargavaea and XBB1006 were the dominant genus-level biomarkers under the optimum SRT, which facilitated the decomposition of monosaccharides, amino acids, terpenoids and polyketides into SCFAs. This work provides an applicable anaerobic carboxylate platform for highly efficient SCFAs production from excess sludge.


Assuntos
Amônia , Esgotos , Fermentação , Esgotos/química , Anaerobiose , Ácidos Graxos Voláteis , Nitrogênio , Concentração de Íons de Hidrogênio
15.
BMJ Nutr Prev Health ; 6(1): 21-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559968

RESUMO

Objectives: Even though disinfectants are commonly used in clinical practice and daily life, there are few studies on their antibacterial ability and cytotoxicity, which are closely related to the safety and effectiveness of their use. To provide a basis for the use of disinfectants, the cytotoxicity and antibacterial activity of three most commonly used disinfectants, povidone-iodine, chlorhexidine acetate and polyhexamethylene biguanide (PHMB), were investigated. Design: A CCK-8 assay was used to measure the activities of human fibroblasts (HF) and keratinocytes (HaCat), the two most important cells in wound healing, following their exposure to disinfectants. The effects of different times and concentrations were included. The antibacterial activity of disinfectants against Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae was reflected by their minimum inhibitory concentration and minimum bactericidal concentration. Results: All three disinfectants showed strong cytotoxicity in direct contact with HF and HaCat cells. Cytotoxicity increased with increasing exposure time and concentration. S. aureus, A. baumannii and K. pneumoniae comprised 70%, 55% and 85% of the strains sensitive to povidone iodine; 50%, 45% and 80% of the strains sensitive to chlorhexidine acetate; and 60%, 45% and 80% of the strains sensitive to PHMB, respectively. Conclusions: All three disinfectants were cytotoxic; therefore, it is necessary to pay attention to the use time and concentration in the clinical setting. All three disinfectants were cytotoxic, with povidone-iodine being the most cytotoxic even at low concentrations. PHMB had better antibacterial efficacy against S. aureus and is suitable for the treatment of shallow wounds primarily. All three tested bacteria were significantly more sensitive to PHMB than to the other disinfectants.

16.
Burns ; 49(6): 1382-1391, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759218

RESUMO

Wounds are in a stressed state, which precludes healing. Trehalose is a stress metabolite that protects cells under stress. Here, we explored whether trehalose reduces stress-induced wound tissue damage. A stress model was prepared by exposing human keratinocytes to hydrogen peroxide (H2O2), followed by trehalose treatment. Trehalose effects on expression of the autophagy-related proteins ATG5 and ATG7 and cell proliferation and migration were evaluated. For in vivo verification, a wound model was established in Sprague-Dawley rats, to measure the effects of trehalose wound-healing rate and reactive oxygen species (ROS) content. Histological changes during wound healing and trehalose's effects on ATG5 and ATG7 expression, necrosis, and apoptosis were examined·H2O2 stress increased ATG5 and ATG7 expression in vitro, but this was insufficient to prevent stress-induced damage. Trehalose further increased ATG5/ATG7 levels, which restored proliferation and increased migration by depolymerizing the cytoskeleton. However, trehalose did not exert these effects after ATG5 and ATG7 knockout. In vivo, the ROS content was higher in the wound tissue than in normal skin. Trehalose increased ATG5/ATG7 expression in wound tissue keratinocytes, reduced necrosis, depolymerized the cytoskeleton, and promoted cell migration, thereby promoting wound healing.


Assuntos
Queimaduras , Trealose , Ratos , Animais , Humanos , Trealose/farmacologia , Trealose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Ratos Sprague-Dawley , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo , Queratinócitos/metabolismo , Cicatrização , Estresse Oxidativo , Necrose , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/farmacologia
17.
Cell Prolif ; 56(11): e13493, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37128180

RESUMO

Cell migration and proliferation are conducive to wound healing; however, regulating cell proliferation remains challenging, and excessive proliferation is an important cause of scar hyperplasia. Here, we aimed to explore how a subvacuum environment promotes wound epithelisation without affecting scar hyperplasia. Human immortalized keratinocyte cells and human skin fibroblasts were cultured under subvacuum conditions (1/10 atmospheric pressure), and changes in cell proliferation and migration, target protein content, calcium influx, and cytoskeleton and membrane fluidity were observed. Mechanical calcium (Ca2+ ) channel blockers were used to prevent Ca2+ influx for reverse validation. A rat wound model was used to elucidate the mechanism of the subvacuum dressing in promoting healing. The subvacuum environment was observed to promote cell migration without affecting cell proliferation; intracellular Ca2+ concentrations and PI3K, p-PI3K, AKT1, p-AKT 1 levels increased significantly. The cytoskeleton was depolymerized, pseudopodia were reduced or absent, and membrane fluidity increased. The use of Ca2+ channel blockers weakened or eliminated these changes. Animal experiments confirmed these phenomena and demonstrated that subvacuum dressings can effectively promote wound epithelisation. Our study demonstrates that the use of subvacuum dressings can enhance cell migration without affecting cell proliferation, promote wound healing, and decrease the probability of scar hyperplasia.


Assuntos
Cicatriz Hipertrófica , Humanos , Ratos , Animais , Cicatriz Hipertrófica/metabolismo , Hiperplasia/metabolismo , Cálcio/metabolismo , Cicatrização , Movimento Celular , Fibroblastos/metabolismo , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo
18.
J Surg Res ; 178(2): 827-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22560853

RESUMO

BACKGROUND: The liver is one of the organs most frequently affected by trauma and hemorrhagic shock; the exact role of p38 mitogen-activated protein kinase (MAPK) activation in response to hepatic hemorrhagic shock/resuscitation (HS/R) remains unclear. MATERIALS AND METHODS: C57Bl/6 mice were divided into four groups: sham-operated group, SB-only group, control group, and SB + HS/R group. Hepatocellular injury (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and tumor necrosis factor (TNF-α) and interleukin (IL-1ß) messenger ribonucleic acid (mRNA) expression in the liver were assessed 6 h after resuscitation, p38 MAPK activation in the liver was assessed at 30 min after resuscitation. RESULTS: p38 MAPK activation was higher in the control group than other groups 30 min after resuscitation. p38 MAPK activation level in the SB + HS/R group did not change significantly compared with that of sham and SB-only groups, but was significantly lower than that in the control group. The TNF-α mRNA expression in the control group was significantly higher than that in the sham group. The TNF-α mRNA levels after HS/R in the SB + HS/R group were significantly lower than those in the control group and were roughly the same as those in the sham and SB-only groups. IL-1ß mRNA expression showed similar changes in the four groups. Serum ALT and AST levels in the control group were significantly higher than those in the sham group. The increase in serum ALT and AST levels after HS/R in the SB + HS/R group was significantly less pronounced than that in the control group and markedly higher than that in the sham group. CONCLUSIONS: p38 MAPK was phosphorylated during the HS/R process. Inhibiting the activation of p38 MAPK may attenuate HS/R injury to the liver.


Assuntos
Imidazóis/farmacologia , Fígado/fisiopatologia , Pirimidinas/farmacologia , Ressuscitação , Choque Hemorrágico/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
19.
Bioact Mater ; 17: 248-260, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35386438

RESUMO

Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it "directional adhesion antibacterial effects". In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35783525

RESUMO

Background: Negative pressure wound therapy (NPWT) with instillation (NPWTi) is a new treatment for chronic skin ulcers (CSUs), but the choice of perfusate is still investigated. The clinical application of Huoxue Shengji (HXSJ) decoction has been proved to promote the formation of granulation. The formation of fresh granulation, angiogenesis, and proliferation of vascular endothelial cells are closely related. The purpose of this study was to observe the clinical efficacy of NWPT with HXSJ decoction instillation in the treatment of CSUs and to explore the potential mechanism by which HXSJ decoction promotes proliferation of vascular endothelial cells at the cellular level. Methods: In the clinical study, the random number table was used to divide the patients into three groups (patients were numbered by visit time and assigned a random number and grouped by the remainder after the random number was divided by 3, and when the number of patients in one group reached 20, the enrolment of this group is stopped), including NPWT combined with HXSJ decoction instillation (group A), NPWT combined with normal saline instillation (group B), and NPWT (group C). Related indexes were examined, including the wound cavity volume, bacterial culture, histopathology examination, time periods of debridement, repair methods, and the time of ulcer healing. In the basic research, the effect of HXSJ decoction on the proliferation of HUVECs was analysed by CCK-8 assay and RT-PCR and western blot were used to quantify the VEGF and VEGFR-2 expression in the relevant signalling pathway. Results: There was no significant difference in the improvement rate of invasive cavity volume (P > 0.05) between groups A and B, but a significant difference was observed between groups A and C (P < 0.05). There was no significant difference in microbial reduction among groups (all P > 0.05). Histopathological examination showed that the microvascular count in group A was significantly higher than that in groups B and C (both P < 0.01) and there was no statistical difference between groups B and C (P > 0.05). There were no significant differences in the number of invasive lesions and repair methods among the groups (all P > 0.05). The healing time of group A was significantly faster than those of groups B and C (compared to group B, P < 0.05; compared to group C, P < 0.01), and there was no statistical difference between groups B and C (P > 0.05). In the cellular experiments, concentration screening was performed and 125 µg/mL HXSJ decoction showed the most significant effect on the proliferation of HUVECs and also enhanced the expression of VEGF and VEGFR-2. Conclusion: HXSJ decoction can enhance the expression of VEGF and VEGFR-2 and promote the proliferation of HUVECs. Treatment with NWPT with HXSJ decoction instillation can further reduce the wound cavity volume; meanwhile, it can promote blood vessel formation in ulcer wounds, thus accelerating the healing of CSUs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa