Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 445: 130474, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36446312

RESUMO

The upper reaches of the Yangtze River have experienced increasing anthropogenic stress. Quantitative tracing of carbon (C) sources and ecological risks through biomarkers i.e., polycyclic aromatic hydrocarbons (PAHs) and n-alkanes is significant for C neutrality and sequestration. Here, source and sink patterns, and factors influencing C burial and biomarker components in a small catchment of Dianchi Lake were explored. The sediment core covered the period 1855-2019. Before 1945, the organic C accumulation rate (OCAR) ranged from 0.71 to 5.12 mg cm-2 yr-1, and the PAHs and n-alkanes fluxes were 106.99-616.09 ng cm-2 yr-1 and 5.56-31.37 µg cm-2 yr-1. During 1945-2005, the OCAR, PAH, and n-alkane burial rapidly increased from 3.19 to 16.17 mg cm-2 yr-1, 230.40 to 2538.81 ng cm-2 yr-1, and 11.63 to 61.90 µg cm-2 yr-1. During 1855-2019, deposition fluxes of PAHs and n-alkanes increased 13.01 and 9.14 times, resulting in increased C burial, driven by environmental changes. A PMF model and the diagnostic ratio indicated that PAHs from coal combustion and traffic emission increased from 22.32% to 65.20% during 1855-2019. The PAH concentrations reflected normal-moderate contamination and potential risks to the aquatic environment. The results facilitate a comprehensive understanding of anthropogenic-driven interactions between increasing OC burial and ecological risks.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Carbono/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Alcanos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Lagos , China
2.
Environ Pollut ; 315: 120438, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265730

RESUMO

The adverse effects of increased nitrate (NO3-) pollution especially from the non-point source on the hydrosphere and anthroposphere are becoming more prominent. The non-point-derived NO3- in the rivers supplying the upstream threatens the aquatic ecosystem of Taihu Lake. Here, dual-stable isotopes (δ15N and δ18O) of NO3- were applied to the Bayesian model (SIAR) for quantitative source identification of reactive nitrogen (Nr) in a mixed agricultural and urban region along the complex river network of the Yangze River delta. The results showed that the NO3- concentrations in the rivers ranged from 1.09 to 4.44 mg L-1 and decreased from the highly urbanized areas to the lakeside rural areas. The specific isotopic characteristics of four sources (atmospheric deposition, AD; chemical fertilizer, CF; manure and sewage, MS; and soil leachate, SL) by the SIAR isotope model indicated that the MS source made the greatest contribution (46.56%) to the total NO3- load, followed by SL (27.86%), CF (23.77%), and AD (1.81%). The highly urbanized areas and the hybrid areas, which contained a mix of industrialized, populated, and agricultural areas, were identified as hotspot areas with heavy Nr pollution, responsible for spatial patterns of δ15N-NO3- and δ18O-NO3-. These hotspot areas were characterized by a less well-developed sewage pipeline system with high Nr emissions from cash crops. The changes in wastewater treatment level, the agricultural production structure, and meteorological changes were the main factors of spatial variation of Nr concentration and source in the upstream Taihu Lake Basin. The variation in Nr concentration across Taihu Lake would respond to these anthropogenic-driven Nr loads. These findings suggest that MS was the predominant source had the strongest effect on the overall riverine NO3- source which was the primary problem that needed to be solved.


Assuntos
Rios , Poluentes Químicos da Água , Rios/química , Nitratos/análise , Isótopos de Oxigênio/análise , Nitrogênio/análise , Esgotos , Teorema de Bayes , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Isótopos de Nitrogênio/análise , Óxidos de Nitrogênio , China
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa