Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Virol ; 97(12): e0157423, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38014947

RESUMO

IMPORTANCE: Marek's disease virus (MDV) is a highly infectious and oncogenic virus that can induce severe T cell lymphomas in chickens. MDV encodes more than 100 genes, most of which have unknown functions. This work indicated that the LORF9 gene is necessary for MDV early cytolytic replication in B lymphocytes. In addition, we have found that the LORF9 deletion mutant has a comparative immunological protective effect with CVI988/Rispens vaccine strain against very virulent MDV challenge. This is a significant discovery that LORF9 can be exploited as a possible target for the development of an MDV gene deletion vaccine.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Doença de Marek , Doença de Marek , Doenças das Aves Domésticas , Animais , Linfócitos B , Galinhas , Deleção de Genes , Herpesvirus Galináceo 2/genética , Doença de Marek/prevenção & controle , Doença de Marek/genética , Vacinas contra Doença de Marek/genética , Replicação Viral
2.
PLoS Comput Biol ; 19(6): e1011188, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327238

RESUMO

In clinical neuroscience, epileptic seizures have been associated with the sudden emergence of coupled activity across the brain. The resulting functional networks-in which edges indicate strong enough coupling between brain regions-are consistent with the notion of percolation, which is a phenomenon in complex networks corresponding to the sudden emergence of a giant connected component. Traditionally, work has concentrated on noise-free percolation with a monotonic process of network growth, but real-world networks are more complex. We develop a class of random graph hidden Markov models (RG-HMMs) for characterizing percolation regimes in noisy, dynamically evolving networks in the presence of edge birth and edge death. This class is used to understand the type of phase transitions undergone in a seizure, and in particular, distinguishing between different percolation regimes in epileptic seizures. We develop a hypothesis testing framework for inferring putative percolation mechanisms. As a necessary precursor, we present an EM algorithm for estimating parameters from a sequence of noisy networks only observed at a longitudinal subsampling of time points. Our results suggest that different types of percolation can occur in human seizures. The type inferred may suggest tailored treatment strategies and provide new insights into the fundamental science of epilepsy.


Assuntos
Epilepsia , Convulsões , Humanos , Encéfalo , Transição de Fase , Algoritmos
3.
Microbiol Immunol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747013

RESUMO

Acute kidney injury (AKI) has considerably high morbidity and mortality but we do not have proper treatment for it. There is an urgent need to develop new prevention or treatment methods. Gut microbiota has a close connection with renal diseases and has become the new therapy target for AKI. In this study, we found the oral administration of the probiotic Limosilactobacillus reuteri had a prevention effect on the AKI induced by lipopolysaccharide (LPS). It reduced serum concentration of creatinine and urea nitrogen and protected the renal cells from necrosis and apoptosis. Meanwhile, L. reuteri improved the gut barrier function, which is destroyed in AKI, and modulated the gut microbiota and relevant metabolites. Compared with the LPS group, L. reuteri increased the proportion of Proteobacteria and reduced the proportion of Firmicutes, changing the overall structure of the gut microbiota. It also influenced the fecal metabolites and changed the metabolite pathways, such as tyrosine metabolism, pentose and glucuronate interconversions, galactose metabolism, purine metabolism, and insulin resistance. These results showed that L. reuteri is a potential therapy for AKI as it helps in sustaining the gut barrier integrity and modulating gut microbiota and related metabolites.

4.
Luminescence ; 39(5): e4765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769927

RESUMO

Isovitexin is a main natural flavonoid component in various plants. Currently, the inhibitory effect of isovitexin on pancreatic lipase (PL) and its mechanism have not been elucidated yet. In the present study, we investigated the inhibitory effect of isovitexin on PL, as well as its interaction mechanism, using enzyme inhibition methods, spectroscopic analysis, and molecular simulations. Results showed that isovitexin possessed significant PL inhibitory activity, with IC50 values of 0.26 ± 0.02 mM. The interaction between isovitexin and PL was dominated by static quenching, and mainly through hydrogen bonding and hydrophobic interaction forces. Analysis of fluorescence spectroscopy confirmed that isovitexin binding altered the conformation of the PL. Circular dichroism (CD) spectrum indicated that isovitexin altered the secondary structure of PL by decreasing the α-helix content and increasing the ß-fold content. Molecular simulations further characterize the conformational changes produced by the interaction between isovitexin with PL. The performed study may provide a new insight into the inhibitory mechanism of isovitexin as a novel PL inhibitor.


Assuntos
Apigenina , Dicroísmo Circular , Inibidores Enzimáticos , Lipase , Pâncreas , Espectrometria de Fluorescência , Lipase/antagonistas & inibidores , Lipase/metabolismo , Lipase/química , Pâncreas/enzimologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Apigenina/química , Apigenina/farmacologia , Animais
5.
J Neurosci ; 42(30): 5860-5869, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760530

RESUMO

Thyroid hormone (TH) controls the timely differentiation of oligodendrocytes (OLs), and its deficiency can delay myelin development and cause mental retardation. Previous studies showed that the active TH T3 is converted from its prohormone T4 by the selenoprotein DIO2, whose mRNA is primarily expressed in astrocytes in the CNS. In the present study, we discovered that SECISBP2L is highly expressed in differentiating OLs and is required for DIO2 translation. Conditional knock-out (CKO) of Secisbp2l in OL lineage resulted in a decreased level of DIO2 and T3, accompanied by impaired OL differentiation, hypomyelination and motor deficits in both sexes of mice. Moreover, the defective differentiation of OLs in Secisbp2l mutants can be alleviated by T3 or its analog, but not the prohormone T4. The present study has provided strong evidence for the autonomous regulation of OL differentiation by its intrinsic T3 production mediated by the novel SECISBP2L-DIO2-T3 pathway during myelin development.SIGNIFICANCE STATEMENT Secisbp2l is specifically expressed in differentiating oligodendrocytes (OLs) and is essential for selenoprotein translation in OLs. Secisbp2l regulates Dio2 translation for active thyroid hormone (TH) T3 production in the CNS. Autonomous regulation of OLs differentiation via SECISBP2L-DIO2-T3 pathway.


Assuntos
Neurogênese , Oligodendroglia , Selenoproteínas , Animais , Diferenciação Celular , Feminino , Iodeto Peroxidase , Masculino , Camundongos , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Selenoproteínas/biossíntese , Selenoproteínas/genética , Hormônios Tireóideos , Iodotironina Desiodinase Tipo II
6.
New Phytol ; 237(6): 2104-2117, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495066

RESUMO

Fatty acid (FA) ß-oxidation provides energy for oil seed germination but also produces massive byproduct reactive oxygen species (ROS), posing potential oxidative damage to plant cells. How plants overcome the contradiction between energy supply and ROS production during seed germination remains unclear. In this study, we identified an Arabidopsis mvs1 (methylviologen-sensitive) mutant that was hypersensitive to ROS and caused by a missense mutation (G1349 substituted as A) of a cytochrome P450 gene, CYP77A4. CYP77A4 was highly expressed in germinating seedling cotyledons, and its protein is localized in the endoplasmic reticulum. As CYP77A4 catalyzes the epoxidation of unsaturated FA, disruption of CYP77A4 resulted in increased unsaturated FA abundance and over accumulated ROS in the mvs1 mutant. Consistently, scavenging excess ROS or blocking FA ß-oxidation could repress the ROS overaccumulation and hypersensitivity in the mvs1 mutant. Furthermore, H2 O2 transcriptionally upregulated CYP77A4 expression and post-translationally modified CYP77A4 by sulfenylating its Cysteine-456, which is necessary for CYP77A4's role in modulating FA abundance and ROS production. Together, our study illustrates that CYP77A4 mediates direct balancing of lipid mobilization and ROS production by the epoxidation of FA during seed germination.


Assuntos
Arabidopsis , Germinação , Espécies Reativas de Oxigênio/metabolismo , Germinação/genética , Ácidos Graxos/metabolismo , Mobilização Lipídica , Sementes/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise , Regulação da Expressão Gênica de Plantas
7.
J Med Virol ; 95(1): e28324, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36401345

RESUMO

Dynamic alteration of the epitranscriptome exerts regulatory effects on the lifecycle of oncogenic viruses in vitro. However, little is known about these effects in vivo because of the general lack of suitable animal infection models of these viruses. Using a model of rapid-onset Marek's disease lymphoma in chickens, we investigated changes in viral and host messenger RNA (mRNA) N6-methyladenosine (m6 A) modification during Marek's disease virus (MDV) infection in vivo. We found that the expression of major epitranscriptomic proteins varies among viral infection phases, reprogramming both the viral and the host epitranscriptomes. Specifically, the methyltransferase-like 3 (METTL3)/14 complex was suppressed during the lytic and reactivation phases of the MDV lifecycle, whereas its expression was increased during the latent phase and in MDV-induced tumors. METTL3/14 overexpression inhibits, whereas METTL3/14 knockdown enhances, MDV gene expression and replication. These findings reveal the dynamic features of the mRNA m6 A modification program during viral replication in vivo, especially in relation to key pathways involved in tumorigenesis.


Assuntos
Doença de Marek , Animais , Doença de Marek/genética , Vírus Oncogênicos/genética , Galinhas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
BMC Neurol ; 23(1): 81, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814261

RESUMO

BACKGROUND: Ectopic pituitary adenoma (EPA) is defined as a special type of pituitary adenoma that originates outside of the sellar region, is extra- or intra-cranially located, and without connection to normal pituitary tissue. EPA is extremely rare, with most cases presented as case reports or small case series. Due to nonspecific symptoms and laboratory indicators, the preoperative diagnosis, treatment and management for EPA remain challenging. CASE PRESENTATION: Here, we report the imaging phenotype and pathological findings of a case of invasive EPA in a 47-year-old woman. A preoperative non-contrast CT scan revealed a 5.8 × 3.6 × 3.7 cm soft tissue mass located in the sphenoid sinus and clivus. MRI showed an ill-defined solid mass with heterogeneous signals on T1-weighted and T2-weighted images. The mass displayed infiltrative growth pattern, destroying bone of the skull base, invading adjacent muscles and encasing vessels. The patient underwent partial tumor resection via transsphenoidal endoscopic surgery. Pathological examination led to diagnosis of ectopic ACTH-secreting pituitary adenoma. Post-surgery, the patient received external beam radiotherapy. CONCLUSION: EPA with invasive growth pattern has rarely been reported. The imaging phenotype displays its relationship to the pituitary tissue and surrounding structures. Immunohistochemical examination acts as a crucial role in differentiating EPA from other skull base tumors. This case report adds to the literature on EPA by summarizing its characteristics alongside a review of the literature.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Cordoma , Neoplasias Hipofisárias , Humanos , Adenoma Hipofisário Secretor de ACT/diagnóstico , Adenoma Hipofisário Secretor de ACT/patologia , Adenoma Hipofisário Secretor de ACT/cirurgia , Neoplasias Hipofisárias/cirurgia , Adenoma/cirurgia , Hipófise/cirurgia , Imageamento por Ressonância Magnética
9.
Chem Rev ; 120(21): 12217-12314, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33136387

RESUMO

Electrocatalysts with single metal atoms as active sites have received increasing attention owing to their high atomic utilization efficiency and exotic catalytic activity and selectivity. This review aims to provide a comprehensive summary on the recent development of such single-atom electrocatalysts (SAECs) for various energy-conversion reactions. The discussion starts with an introduction of the different types of SAECs, followed by an overview of the synthetic methodologies to control the atomic dispersion of metal sites and atomically resolved characterization using state-of-the-art microscopic and spectroscopic techniques. In recognition of the extensive applications of SAECs, the electrocatalytic studies are dissected in terms of various important electrochemical reactions, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Examples of SAECs are deliberated in each case in terms of their catalytic performance, structure-property relationships, and catalytic enhancement mechanisms. A perspective is provided at the end of each section about remaining challenges and opportunities for the development of SAECs for the targeted reaction.

10.
Biosci Biotechnol Biochem ; 86(11): 1552-1561, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36073357

RESUMO

Garlic is a popular culinary herb for the prevention and treatment of alcoholic liver disease (ALD). Diallyl Trisulfide (DATS) is the major organosulfur compound of garlic. Latest studies indicated that the hepatocyte pyroptosis serves a primary role in the pathogenesis of ALD. The present study aims to assess the inhibitory effect of DATS on alcohol-induced hepatocyte pyroptosis, and to elucidate the potential mechanism by using the hepatocyte cell line HL-7702. Our study found that DATS inhibited alcohol-induced pyroptosis by decreasing gasdermin D (GSDMD) activation. Results illuminated that DATS inhibited alcohol-induced (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation by reducing intracellular reactive oxygen species (ROS) accumulation. Furthermore, DATS upregulated hydrogen sulfide (H2S) to resist ROS overproduction. The present study demonstrated that DATS mitigated alcohol-induced hepatocyte pyroptosis by increasing the intracellular level of H2S.


Assuntos
Compostos Alílicos , Alho , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Apoptose , Compostos Alílicos/farmacologia , Sulfetos/farmacologia , Hepatócitos/metabolismo , Etanol , Antioxidantes/farmacologia
11.
Ecotoxicol Environ Saf ; 230: 113132, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979305

RESUMO

The abnormal disposal process of electronic waste (e-waste) always emits a variety of toxic substances that enter the human body through various environmental media and can have many adverse health effects. Metals are thought to be inextricably linked to neurodegeneration. In the present study, we tried to explore the neurodegenerative status of subjects exposed to e-waste and the association between metal intake and neurodegeneration. We recruited the residents near the e-waste recycling area (the exposed group) and the residents without any e-waste contact history (the reference group) for a comparative study with detection and analysis of metals, biomarkers associated with neurodegeneration or oxidative stress (OS). The results showed that the metals between the reference and exposed group were significantly different. The concentrations of Brain-derived neurotrophic factor (BDNF) and ß-amyloid protein 42 (Aß42) in the exposed groups were significantly lower, while the levels of Euchromatic Histone lysine Methyltransferase 1 (EHMT1), Bromodomain Adjacent to Zinc finger domain 2B (BAZ2B) and Malondialdehyde (MDA) were significantly higher than in the reference groups. Although the ratio of Aß42/Aß40 had no statistical significance in the two groups, the medians of the ratio in the exposed group was lower than in the reference group. The linear regression and mediating effect analysis showed that MDA (OS) might mediate the effects of metals on EHMT1(pAg-MDA <0.001, pMDA-EHMT1 <0.05, pAg-EHMT1 <0.001). It could be inferred from the results of the present investigation that e-waste exposure had a high risk of neurodegeneration, especially Sliver (Ag) and Nickel (Ni).

12.
Ecotoxicol Environ Saf ; 243: 114013, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037633

RESUMO

Both fine particulate matter (PM2.5) and ozone (O3) may have adverse effects on human health. However, previous studies on the effects of air pollutants mainly have focused on susceptible population, and evidence on healthy young adults is limited. We aimed to examine the associations of the two main air pollutants (PM2.5 and O3) with lung function, inflammation and oxidative stress in healthy young adults. We recruited 30 healthy young adults for a longitudinal panel study in Beijing and implemented health examination seven times, including lung function (FEV1 and PEF) and biomarkers of inflammation and oxidative stress (i.e. C-reactive protein, CRP; interleukin-6, IL-6; malondialdehyde, MDA) from December 2019 to May 2021. Hourly ambient air pollutants data were obtained from the closest air quality monitoring station. Linear mixed-effect model was applied to explore the associations between air pollutants and lung function, inflammation and oxidative stress. We observed higher PM2.5 exposure was associated with decrement in lung function and increment in CRP and MDA. Each 10 µg/m3 increase in PM2.5 (lag 2 day) is associated with a 17.06 ml (95% CI: -31.53, -2.58) decrease in FEV1, 46.34 ml/s (95% CI: -76.41, -16.27) decrease in PEF and increments of 2.86% (95% CI: 1.47%, 4.27%) in CRP, 1.63% (95% CI: 0.14%, 3.14%) in MDA respectively. However, there is no significant association between ozone exposure and health indicators. The study suggested that short-term exposure to PM2.5 may decrease lung function and induce inflammation and oxidative stress in healthy adults, but there is no association between O3 and each outcome.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pulmão , Ozônio , Material Particulado , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Proteína C-Reativa/metabolismo , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Inflamação/induzido quimicamente , Pulmão/metabolismo , Pulmão/patologia , Estresse Oxidativo , Ozônio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Adulto Jovem
13.
BMC Genomics ; 22(1): 296, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888086

RESUMO

BACKGROUND: The newly discovered reversible N6-methyladenosine (m6A) modification plays an important regulatory role in gene expression. Long non-coding RNAs (lncRNAs) participate in Marek's disease virus (MDV) replication but how m6A modifications in lncRNAs are affected during MDV infection is currently unknown. Herein, we profiled the transcriptome-wide m6A modification in lncRNAs in MDV-infected chicken embryo fibroblast (CEF) cells. RESULTS: Methylated RNA immunoprecipitation sequencing results revealed that the lncRNA m6A modification is highly conserved with MDV infection increasing the expression of lncRNA m6A modified sites compared to uninfected cell controls. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that lncRNA m6A modifications were highly associated with signaling pathways associated with MDV infection. CONCLUSIONS: In this study, the alterations seen in transcriptome-wide m6A occurring in lncRNAs following MDV-infection suggest this process plays important regulatory roles during MDV replication. We report for the first time profiling of the alterations in transcriptome-wide m6A modification in lncRNAs of MDV-infected CEF cells.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , RNA Longo não Codificante , Adenosina/análogos & derivados , Animais , Embrião de Galinha , Galinhas/genética , Doença de Marek/genética , RNA Longo não Codificante/genética , Transcriptoma , Replicação Viral
14.
Small ; 17(50): e2104109, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34708517

RESUMO

The shuttle effect caused by soluble lithium polysulfides (LiPSs) and intrinsic slow electrochemical transformation from LiPSs to Li2 S/Li2 S2 will induce undesirable cycling performance, which is the primary obstruct limiting the practical applications of lithium-sulfur (Li-S) batteries. Here a convenient method is designed to fabricate the 2D louts-like N-Co2 VO4 -Co heterostructures with well-abundant interfaces and oxygen vacancies (Vo ), endowing the materials with both "sulfiphilic" and "lithiophilic" features. When employed as the modification layer coated on commercial Celgard 2400 separator, the as-prepared N-Co2 VO4 -Co/PP with synergistic adsorption-electrocatalysis effects achieves desirable sulfur electrochemistry, thus showing a high initial discharge capacity of 1466.4 mAh g-1 at 0.1 C and stable cycle life with a fade rate of 0.03% per cycle over 1000 cycle at 3.0 C. Moreover, a superior areal capacity of 12.84 mAh cm-2 is preserved under high sulfur loading of 14.3 mg cm-2 .

15.
Vet Res ; 52(1): 20, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579382

RESUMO

Processing and packaging of herpesvirus genomic DNA is regulated by a packaging-associated terminase complex comprising of viral proteins pUL15, pUL28 and pUL33. Marek's disease virus (MDV) homologs UL28 and UL33 showed conserved functional features with high sequence identity with the corresponding Herpes simplex virus 1 (HSV-1) homologs. As part of the investigations into the role of the UL28 and UL33 homologs of oncogenic MDV for DNA packaging and replication in cultured cells, we generated MDV mutant clones deficient in UL28 or UL33 of full-length MDV genomes. Transfection of UL28- or UL33-deleted BAC DNA into chicken embryo fibroblast (CEF) did not result either in the production of visible virus plaques, or detectable single cell infection after passaging onto fresh CEF cells. However, typical MDV plaques were detectable in CEF transfected with the DNA of revertant mutants where the deleted genes were precisely reinserted. Moreover, the replication defect of the UL28-deficient mutant was completely restored when fragment encoding the full UL28 gene was co-transfected into CEF cells. Viruses recovered from the revertant construct, as well as by the UL28 co-transfection, showed replication ability comparable with parental virus. Furthermore, the transmission electron microscopy study indicated that immature capsids were assembled without the UL28 expression, but with the loss of infectivity. Importantly, predicted three-dimensional structures of UL28 between MDV and HSV-1 suggests conserved function in virus replication. For the first time, these results revealed that both UL28 and UL33 are essential for MDV replication through regulating DNA cleavage and packaging.


Assuntos
DNA Viral/química , Endodesoxirribonucleases/genética , Mardivirus/fisiologia , Receptores de Quimiocinas/genética , Proteínas Virais/genética , Replicação Viral , Sequência de Aminoácidos , Animais , Embrião de Galinha , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Mardivirus/enzimologia , Mardivirus/genética , Clivagem do RNA , Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Alinhamento de Sequência , Organismos Livres de Patógenos Específicos , Proteínas Virais/química , Proteínas Virais/metabolismo
16.
Ecotoxicol Environ Saf ; 222: 112513, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274839

RESUMO

The heavy metals pollution and related health issues were widely reported in e-waste sites, while the impacts of e-waste exposure on the essential trace elements have been neglected. The aim of this study was focused on the internal Cu, Fe, Mn and Zn levels in the residents from an e-waste site and the potential endocrine disrupting effects of these essential trace elements on the hypothalamic-pituitary-thyroid (HPT) axis. This was a cross-sectional study that 87 subjects were recruited from the e-waste site and 81 from the reference site. The results indicated that the e-waste exposed group had significantly lower Fe, Mn level when compared with the reference group (p < 0.05). Cu and Zn were also lower in the exposed group but the differences were not statistically significant. The exposed group had significantly higher TSH level and Fe was significantly associated with TSH in the females (ß (95% CI): - 1.892 (-3.309, -0.475), p = 0.009), rather than in males or all subjects. The exposed group also showed oxidative stress which was indicated by the increased concentrations of MDA and 8-iso-PG. It was further indicated the elevated MDA was mediated by the increase of TSH in the females but not directly related to Fe. In conclusion, the e-waste exposed group showed a decrease of essential trace elements, an increase of TSH and oxidative stress. The decreased Fe was related to the elevated TSH in the females, which further indirectly mediated the increase of oxidative stress. The results suggested that the internal exposure levels and the potential health effects of the essential trace elements in populations from e-waste sites should be of more concern. And the women might be more vulnerable and they need more protection to against the adverse health effects from e-waste.


Assuntos
Resíduo Eletrônico , Oligoelementos , Estudos Transversais , Feminino , Hormônios , Humanos , Masculino , Glândula Tireoide/química , Oligoelementos/análise
17.
Int J Cancer ; 147(11): 3139-3151, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32875565

RESUMO

The evolutionary dynamics of human cancers has been investigated popularly and several bifurcated paths in cancer evolutionary trajectories are revealed to be with differential outcomes and phenotypes. However, whether such bifurcated paths exist in glioblastoma (GBM) remains unclear. In 385 GBM samples, through determining the clonal status of cancer driver events and inferring their temporal order, we constructed a temporal map of evolutionary trajectories at the patient population level. By investigating the differential impact on clinical outcome, we identified four key bifurcated paths, namely, "chromosome 10 copy number loss (ie, 10 loss) → chromosome 19 copy number gain (ie, 19 gain): 10 loss → 13q loss"; "10 loss → 19 gain: 10 loss → 15q loss"; "10 loss → 19 gain: 10 loss → 6q loss" and "10 loss → 19 gain: 10 loss → 16q loss". They formed a core multibranches path, with 10 loss being regarded as the common earliest event followed by 19 gain and four other departure events (13q loss, 15q loss, 6q loss and 16q loss), which may account for their difference in genome instability and patient survival time. Compared to "10 loss → 19 gain", the patients with "10 loss → 13q loss" had higher telomerase activity. Notably, there were obvious discrepancies in immune activity and immune cell infiltration level between patients with "10 loss → 13q/16q loss" and "10 loss → 19 gain", highlighting the bifurcated paths' effect on tumor immune microenvironment. In summary, our study identifies four key bifurcated paths in GBM for the first time, suggesting the feasibility of patient stratification and prognosis prediction based on key bifurcated paths.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos/genética , Redes Reguladoras de Genes , Glioblastoma/genética , Evolução Clonal , Dosagem de Genes , Humanos , Masculino , Mutação , Prognóstico , Análise de Sobrevida , Microambiente Tumoral
18.
IUBMB Life ; 72(2): 259-265, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31498969

RESUMO

Schizophrenia (SCZ) is a complex, frequently disabling psychiatric disorder. Prenatal exposure to famine, an environmental factor, plays a significant role in the cause of SCZ. We used DNA methylation related sites to analyze their association with prenatal famine exposure and SCZ risk in a Northeast Han Chinese population. A total of 967 subjects (446 patients with SCZ/521 health controls) were recruited. Five single-nucleotide polymorphisms (rs2300149 in ITIH1, rs2675956 in NGEF, rs3758543 in NT5C2, rs7003288 in NA, and rs871925 in MAD1L1) were selected and genotyped. Genotype distribution and allele frequency analysis indicated that rs871925 was significantly associated with SCZ. We also found a significant association between prenatal exposure to famine and rs871925 in the recessive model in the health control group. The generalized multifactor dimensionality reduction analysis suggested a five-locus interaction model association with the risk of developing SCZ. Our data suggested that MAD1L1 rs871925 was associated with prenatal famine exposure and SCZ susceptibility in a Northeast Han Chinese population.


Assuntos
Povo Asiático/genética , Proteínas de Ciclo Celular/genética , Fome Epidêmica/estatística & dados numéricos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Esquizofrenia/genética , Estudos de Casos e Controles , China/epidemiologia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Fatores de Risco , Esquizofrenia/epidemiologia
19.
Mar Drugs ; 18(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605149

RESUMO

Four new indolyl diketopiperazines, aspamides A-E (1-4) and two new diketopiperazines, aspamides F-G (5-6), along with 11 known diketopiperazines and intermediates were isolated from the solid culture of Aspergillus versicolor, which is an endophyte with the sea crab (Chiromantes haematocheir). Further chiral high-performance liquid chromatography resolution gave enantiomers (+)- and (-)-4, respectively. The structures and absolute configurations of compounds 1-6 were determined by the comprehensive analyses of nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), and electronic circular dichroism (ECD) calculation. All isolated compounds were selected for the virtual screening on the coronavirus 3-chymoretpsin-like protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and the docking scores of compounds 1-2, 5, 6, 8 and 17 were top among all screened molecules, may be helpful in fighting with Corona Virus Disease-19 (COVID-19) after further studies.


Assuntos
Antivirais , Organismos Aquáticos/química , Aspergillus/química , Cisteína Endopeptidases/metabolismo , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Antivirais/química , Antivirais/metabolismo , Betacoronavirus/metabolismo , Cromatografia Líquida de Alta Pressão , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Avaliação Pré-Clínica de Medicamentos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Acoplamento Molecular , SARS-CoV-2 , Estereoisomerismo , Interface Usuário-Computador , Proteínas não Estruturais Virais/química
20.
Glia ; 67(7): 1333-1343, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30889310

RESUMO

Neural progenitor cells (NPCs) are sequentially specified into neurons and glia during the development of central nervous system. WNT/ß-catenin signaling is known to regulate the balance between the proliferation and differentiation of NPCs during neurogenesis. However, the function of WNT/ß-catenin signaling during gliogenesis remains poorly defined. Here, we report that activation of WNT/ß-catenin signaling disrupts astrogliogenesis in the developing spinal cord. Conversely, inhibition of WNT/ß-catenin signaling leads to precocious astrogliogenesis. Further analysis reveals that activation of WNT/ß-catenin pathway results in a dramatic increase of neurogenin 2 (Ngn2) expression in transgenic mice, and knockdown of Ngn2 expression in neural precursor cells can reverse the inhibitory effect of WNT/ß-catenin on astrocytic differentiation. Moreover, Ngn2 can directly bind to the promoters of several astrocyte specific genes and suppress their expression independent of STATs activity. Together, our studies provide the first in vivo evidence that WNT/ß-catenin signaling inhibits early astrogliogenesis via an Ngn2-dependent transcriptional repression mechanism.


Assuntos
Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Neurogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa