Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(31): e2306410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38456764

RESUMO

Electrooxidation of biomass into fine chemicals coupled with energy-saving hydrogen production for a zero-carbon economy holds great promise. Advanced anode catalysts determine the cell voltage and electrocatalytic efficiency greatly, further the rational design and optimization of their active site coordination remains a challenge. Herein, a phosphorus-oxygen terminals-rich species (Ni2P-O-300) via an anion-assisted pyrolysis strategy is reported to induce strong electronic coupling and high valence state of active nickel sites over nickel phosphide. This ultimately facilitates the rapid yet in-situ formation of high-valence nickel with a high reaction activity under electrochemical conditions, and exhibits a low potential of 1.33 V vs. RHE at 10 mA cm-2, exceeding most of reported transition metal-based catalysts. Advanced spectroscopy, theoretical calculations, and experiments reveal that the functional P-O species can induce the favorable local bonding configurations for electronic coupling, promoting the electron transfer from Ni to P and the adsorption of benzyl alcohol (BA). Finally, the hydrogen production efficiency and kinetic constant of BA electrooxidation by Ni2P-O-300 are increased by 9- and 2.8- fold compared with the phosphorus-oxygen terminals-deficient catalysts (Ni2P-O-500). This provides an anion-assisted pyrolysis strategy to modulate the electronic environment of the Ni site, enabling a guideline for Ni-based energy/catalysis systems.

2.
J Sci Food Agric ; 104(9): 5284-5295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308594

RESUMO

BACKGROUND: The increasing attention toward frozen soy-based foods has sparked interest. Variations exist in the quality and structure of soymilk gels induced by different salt ions, leading to diverse changes post-freezing. This study compared and analyzed the effects of calcium chloride (CC), magnesium chloride (MC) and calcium sulfate (CS) on the quality characteristics and protein structure changes of soymilk gels (CC-S, MC-S and CS-S) before and after freezing, and clarified the mechanisms of freezing on soymilk gel. RESULTS: The formation rate of soymilk gel is influenced by the type of salt ions. In comparison to CS and MC, soymilk gel induced by CC exhibited the fastest formation rate, highest gel hardness, lowest moisture content, and smaller gel pores. However, freezing treatment deteriorated the quality of soymilk gel induced by different salt ions, leading to a decline in textural properties (hardness and chewiness). Among these, the textual state of CC-induced soymilk gel remained optimal, exhibiting the least apparent damage and minimal cooking loss. Freezing treatments prompt a transition of soymilk gel secondary structure from ß-turns to ß-sheets, disrupting the protein's tertiary structure. Furthermore, freezing treatments also fostered the crosslinking between soymilk gel protein, increasing the content of disulfide bonds. CONCLUSION: The quality of frozen soymilk gel is influenced by the rate of gel formation induced by salt ions. After freezing, soymilk gel with faster gelation rates exhibited a greater tendency for the transformation of protein-water interactions into protein-protein interactions. They showed a higher degree of disulfide bond formation, resulting in a more tightly knit and firm frozen gel network structure with denser and more uniformly distributed pores. © 2024 Society of Chemical Industry.


Assuntos
Congelamento , Géis , Leite de Soja , Leite de Soja/química , Géis/química , Proteínas de Soja/química , Manipulação de Alimentos/métodos , Cloreto de Magnésio/química , Cloreto de Cálcio/química , Íons/química
3.
Int J Biol Macromol ; 268(Pt 1): 131621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631588

RESUMO

In this study, the fibrous structure formation mechanism of soybean protein during high moisture extrusion processing was investigated using a dead-stop operation, and based on the interaction between soybean protein concentrate (SPC) and L-cysteine (CYS). The thermal properties, SDS-PAGE and particle size distribution of the samples from different extrusion zones were investigated. It was revealed that the addition of a moderate amount of CYS (0.1 %) promoted the fibrous structure formation in the SPC extrudates and optimised the textural properties of the SPC extrudates. In the extruder barrel, addition of CYS (0.1 %) promoted protein depolymerisation and unfolding in the mixing and cooking zones, and facilitated protein aggregation in the die and cooling zones. Protein solubility and raman spectroscopy revealed that disulfide bonds were principally responsible for fibrous structure formation; favoured when the intermolecular disulfide bonds (t-g-t mode) was increased. Finally, the transformation of protein conformation was revealed by secondary structure and surface hydrophobicity, which confirmed that the effect of CYS on protein conformation mainly occurred in the cooling zone. This study provides a theoretical basis for the application of CYS to regulate the fibrous structure of meat analogues.


Assuntos
Cisteína , Proteínas de Soja , Proteínas de Soja/química , Cisteína/química , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Glycine max/química , Água/química , Conformação Proteica , Tamanho da Partícula , Estrutura Secundária de Proteína
4.
Foods ; 13(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063299

RESUMO

The global development of livestock production systems, accelerated by the growing demand for animal products, has greatly contributed to land-use change, greenhouse gas emissions, and pollution of the local environment. Further, excessive consumption of animal products has been linked with cardiovascular diseases, digestive system diseases, diabetes, and cancer. On the other hand, snacks, pasta, and bread available on the market are made from wheat, fat, salt, and sugar, which contribute to the risk of cardiovascular diseases. To counter these issues, a range of plant protein-based food products have been developed using different processing techniques, such as extrusion. Given the easy scalability, low cost of extrusion technology, and health benefits of soy proteins, this review focuses on the extrusion of soy protein and the potential application of soy protein-based extrudates in the manufacture of healthy, nutritious, and sustainable meat analogs, snacks, pasta products, and breakfast cereals. This review discusses the addition of soy protein to reformulate hypercaloric foods through extrusion technology. It also explores physical and chemical changes of soy proteins/soy protein blends during low and high moisture extrusion. Hydrogen bonds, disulfide bonds, and hydrophobic interactions influence the properties of the extrudates. Adding soy protein to snacks, pasta, breakfast cereals, and meat analogs affects their nutritional value, physicochemical properties, and sensory characteristics. The use of soy proteins in the production of low-calorie food could be an excellent opportunity for the future development of the soybean processing industry.

5.
Foods ; 13(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998623

RESUMO

Freezing affects texture and induces the loss of gel quality. This study investigated the effects of methylcellulose (MC) (0.2%, 0.4%, 0.6%) and sodium hexametaphosphate (SHMP) (0.15%, 0.3%) on the gel textural and structural properties of SPI gels before and after freezing, and explores the synergistic enhancement of gel texture and the underlying mechanisms resulting from the simultaneous addition of SHMP and MC to SPI gels. It was revealed that MC improved the strength of SPI gels through its thickening properties, but it could not inhibit the reduction of SPI gels after freezing. The 0.4% MC-SPI gel exhibited the best gel strength (193.2 ± 2.4 g). SHMP inhibited gel reduction during freezing through hydrogen bonding and ionic interactions; it enhanced the freezing stability of SPI gels. The addition of 0.15% SHMP made the water-holding capacity in SPI gels reach the highest score after freezing (58.2 ± 0.32%). The synergistic effect of MC and SHMP could improve the strength and the freezing stability of SPI gels. MC facilitated the release of ionizable groups within SPI, causing negatively charged SHMP groups to aggregate on the SPI and inhibit the freezing aggregation of proteins. These results provide a strong basis for the improvement of cryogenic soy protein gel performance by SHMP and MC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa