Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39016701

RESUMO

Microwave reflectometry is an invaluable diagnostic tool for measuring electron density profiles in large fusion devices. Density fluctuations near the plasma cutoff layer, particularly those that are time-varying on the timescale of the reflectometry measurement, can result in distortions in phase and/or amplitude of the reflected waveform, which present challenges to the accuracy of the reconstructed profile. The ultra-short pulse reflectometry (USPR) technique eliminates the time-varying issue in that reflectometry data are collected on a nanosecond timescale, essentially freezing the fluctuations in place. An X-mode dedicated 32-channel USPR system has been developed and installed on the EAST, covering the operation frequency range from 52 to 92 GHz. This system enables high-resolution density profile measurements in the plasma pedestal and scrape-off layer, with resolutions reaching 5 mm and 1 µs, respectively. Laboratory testing of the system performance has been conducted, demonstrating the potential of the USPR technique to provide accurate and high-temporal-resolution density profiles in challenging plasma environments.

2.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39185927

RESUMO

A pioneering 4-channel, high-k poloidal, millimeter-wave collective scattering system has been successfully developed for the Experimental Advanced Superconducting Tokamak (EAST). Engineered to explore high-k electron density fluctuations, this innovative system deploys a 270 GHz mm-wave probe beam launched from Port K and directed toward Port P (both ports lie on the midplane and are 110° part), where large aperture optics capture radiation across four simultaneous scattering angles. Tailored to measure density fluctuations with a poloidal wavenumber of up to 20 cm-1, this high-k scattering system underwent rigorous laboratory testing in 2023, and the installation is currently being carried out on EAST. Its primary purpose lies in scrutinizing ion and electron-scale instabilities, such as the electron temperature gradient (ETG) mode, by furnishing measurements of the kθ (poloidal wavenumber) spectrum. This advancement significantly bolsters the capacity to probe high-k electron density fluctuations within the framework of EAST. Beam tracing and data interpretation modules developed for both EAST and NSTX-U high-k scattering diagnostics are described.

3.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350476

RESUMO

A carefully designed waveguide-based millimeter-wave notch filter, operating at 140 GHz, safeguards plasma diagnostic instruments from gyrotron leakage. Utilizing cylindrical cavity resonators with aperture coupling, the filter efficiently resonates 140 GHz wave-power into the TE11p mode, optimizing various geometrical parameters for practical fabrication and high-yield production. Thorough thermal analysis ensures its ability to handle power. The filter achieves outstanding performance with over 90 dB rejection at 140 GHz while providing low insertion loss over the passband (110-138 GHz), which is ideally suited for system-on-chip approach F-band diagnostic system applications.

4.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39254431

RESUMO

The next generation of fusion reactors, exemplified by projects such as the Demonstration Power Plant following the International Thermonuclear Experimental Reactor, faces the monumental challenge of proving the viability of generating electricity through thermonuclear fusion. This pursuit introduces heightened complexities in diagnostic methodologies, particularly in microwave-based diagnostics. The increased neutron fluence necessitates significant reductions in vessel penetrations and the elimination of internal diagnostics, posing substantial challenges. SoC technology offers a promising solution by enabling the miniaturization, modularization, integration, and enhancing the reliability of microwave systems. After seven years of research, our team successfully pioneered the V- and W-band system-on-chip approach, leading to the development of active transmitters and passive receiver modules applied in practical settings, notably within the DIII-D tokamak project. Arrays of these modules have supported microwave imaging diagnostics. New physics measurement results from the Electron Cyclotron Emission Imaging system on DIII-D provide compelling evidence of improved diagnostics following the adoption of SoC technology. Furthermore, we achieved a breakthrough in developing an F-band SoC, advancing higher frequency capabilities for fusion devices. These achievements represent a significant leap forward in fusion diagnostic technology, marking substantial progress toward establishing reliable and efficient plasma diagnostics for future fusion reactors.

5.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958514

RESUMO

An Electron Cyclotron Emission (ECE) modeling code has been developed to model ECE radiation with an arbitrary electron momentum distribution, a small oblique angle, both ordinary (O-mode) and extraordinary polarizations (X-mode), and multiple cyclotron frequency harmonics. The emission and absorption coefficients are calculated using the Poynting theorem from the cold plasma dispersion and the electron-microwave interaction from the full anti-Hermitian tensor. The modeling shows several ECE radiation signatures that can be used to diagnose the population of suprathermal electrons in a tokamak. First, in an n = 2 X-mode (X2) optically thick plasma and oblique ECE view, the modeling shows that only suprathermal electrons, which reside in a finite region of the velocity and space domains, can effectively generate cyclotron emissions to the ECE receiver. The code also finds that the O1 mode is sensitive to suprathermal electrons of both a high v⊥ and v‖, while the X2 mode is dominantly sensitive to suprathermal electrons of a high v⊥. The modeling shows that an oblique ECE system with both X/O polarization and a broad frequency coverage can be used to effectively yield information of the suprathermal electron population in a tokamak.

6.
Rev Sci Instrum ; 92(4): 043529, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243474

RESUMO

To efficiently determine the plasma electron density fluctuations using the MIR diagnostic technique, a 55-75 GHz 65 nm-CMOS transmitter has been developed where four separate intermediate frequency (IF) signals are up-converted, amplified, and then combined to generate an 8-tone RF output; a broadband 90 nm-CMOS receiver has also been constructed, which consists of an RF-low noise amplifier (LNA), mixer, and IF amplifier. The circuits and their corresponding modules will soon be deployed on the DIII-D and NSTX-U fusion devices. A 110-140 GHz 65 nm-CMOS receiver has also been designed, which is suitable for measuring the deep-core temperature fluctuations in the DIII-D tokamak using the electron cyclotron emission imaging diagnostic system. In addition to the RF-LNA/balun, mixer, and IF amplifier, an LO balun/tripler and driving amplifier are now included in this highly integrated circuit chip. By adopting the microwave and millimeter-wave system-on-chip concept in the front-end system design, this paper demonstrates that compact transmitter and receiver modules can be easily built, which, in turn, facilitates array implementation and maintenance.

7.
Dev Cell ; 53(6): 724-739.e14, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32574592

RESUMO

Gradients of decapentaplegic (Dpp) pattern Drosophila wing imaginal discs, establishing gene expression boundaries at specific locations. As discs grow, Dpp gradients expand, keeping relative boundary positions approximately stationary. Such scaling fails in mutants for Pentagone (pent), a gene repressed by Dpp that encodes a diffusible protein that expands Dpp gradients. Although these properties fit a recent mathematical model of automatic gradient scaling, that model requires an expander that spreads with minimal loss throughout a morphogen field. Here, we show that Pent's actions are confined to within just a few cell diameters of its site of synthesis and can be phenocopied by manipulating non-diffusible Pent targets strictly within the Pent expression domain. Using genetics and mathematical modeling, we develop an alternative model of scaling driven by feedback downregulation of Dpp receptors and co-receptors. Among the model's predictions is a size beyond which scaling fails-something we observe directly in wing discs.


Assuntos
Proteínas de Drosophila/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Animais , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas da Matriz Extracelular/metabolismo , Retroalimentação Fisiológica , Discos Imaginais/embriologia , Discos Imaginais/metabolismo , Modelos Teóricos
8.
Rev Sci Instrum ; 89(10): 10C119, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399798

RESUMO

Laser-induced fluorescence (LIF) using a pulsed laser is successfully applied in an argon plasma. The laser system consists of a pumping pulse laser fixed at 532 nm and a tunable dye laser. Using a homemade Fabry-Perot interferometer, the large linewidth of the original output is reduced by one order from 4 GHz to 340 MHz. The measured ion temperature is 0.15 eV with a velocity resolution about 200 m/s. It provides great possibility for the combination of LIF and planar LIF using the same pulsed laser system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa