Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
EMBO Rep ; 23(6): e54387, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35532311

RESUMO

Primordial germ cells (PGCs) are the progenitor cells that give rise to sperm and eggs. Sinhcaf is a recently identified subunit of the Sin3 histone deacetylase complex (SIN3A-HDAC). Here, we provide evidence that Sinhcaf-dependent histone deacetylation is essential for germ plasm aggregation and primordial germ cell specification. Specifically, maternal-zygotic sinhcaf zebrafish mutants exhibit germ plasm aggregation defects, decreased PGC abundance and male-biased sex ratio, which can be rescued by re-expressing sinhcaf. Overexpression of sinhcaf results in excess PGCs and a female-biased sex ratio. Sinhcaf binds to the promoter region of kif26ab. Loss of sinhcaf epigenetically switches off kif26ab expression by increasing histone 3 acetylation in the promoter region. Injection of kif26ab mRNA could partially rescue the germ plasm aggregation defects in sinhcaf mutant embryos. Taken together, we demonstrate a role of Sinhcaf in germ plasm aggregation and PGC specialization that is mediated by regulating the histone acetylation status of the kif26ab promoter to activate its transcription. Our findings provide novel insights into the function and regulatory mechanisms of Sinhcaf-mediated histone deacetylation in PGC specification.


Assuntos
Histonas , Peixe-Zebra , Animais , Feminino , Células Germinativas/metabolismo , Histonas/metabolismo , Masculino , RNA Mensageiro/genética , Peixe-Zebra/genética , Zigoto
2.
Fish Shellfish Immunol ; 146: 109419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301812

RESUMO

Peroxiredoxins (Prxs) are a family of antioxidant enzymes crucial for shielding cells against oxidative damage from reactive oxygen species (ROS). In this study, we cloned and analyzed two grass carp peroxiredoxin genes, CiPrx5 and CiPrx6. These genes exhibited ubiquitous expression across all sampled tissues, with their expression levels significantly modulated upon exposure to grass carp reovirus (GCRV). CiPrx5 was localized in the mitochondria, while CiPrx6 was uniformly distributed in the whole cells. Transfection or transformation of CiPrx5 and CiPrx6 into fish cells or E. coli significantly enhanced host resistance to H2O2 and heavy metals, leading to increased cell viability and reduced cell apoptosis rates. Furthermore, purified recombinant CiPrx5 and CiPrx6 proteins effectively protected DNA against oxidative damage. Notably, overexpression of both peroxiredoxins in fish cells effectively inhibited GCRV replication, reduced intracellular ROS levels induced by GCRV infection and H2O2 treatment, and induced autophagy. Significantly, these functions of CiPrx5 and CiPrx6 in GCRV replication and ROS mitigation were abolished upon treatment with an autophagy inhibitor. In summation, our findings suggest that grass carp Prx5 and Prx6 promote autophagy to inhibit GCRV replication, decrease intracellular ROS, and provide protection against oxidative stress.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Carpas/metabolismo , Espécies Reativas de Oxigênio , Peroxirredoxinas/genética , Escherichia coli , Peróxido de Hidrogênio , Infecções por Reoviridae/prevenção & controle , Estresse Oxidativo , Autofagia , Doenças dos Peixes/prevenção & controle
3.
Genome Res ; 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831591

RESUMO

Genome editing by the well-established CRISPR/Cas9 technology has greatly facilitated our understanding of many biological processes. However, a complete whole-genome knockout for any species or model organism has rarely been achieved. Here, we performed a systematic knockout of all the genes (1333) on Chromosome 1 in zebrafish, successfully mutated 1029 genes, and generated 1039 germline-transmissible alleles corresponding to 636 genes. Meanwhile, by high-throughput bioinformatics analysis, we found that sequence features play pivotal roles in effective gRNA targeting at specific genes of interest, while the success rate of gene targeting positively correlates with GC content of the target sites. Moreover, we found that nearly one-fourth of all mutants are related to human diseases, and several representative CRISPR/Cas9-generated mutants are described here. Furthermore, we tried to identify the underlying mechanisms leading to distinct phenotypes between genetic mutants and antisense morpholino-mediated knockdown embryos. Altogether, this work has generated the first chromosome-wide collection of zebrafish genetic mutants by the CRISPR/Cas9 technology, which will serve as a valuable resource for the community, and our bioinformatics analysis also provides some useful guidance to design gene-specific gRNAs for successful gene editing.

4.
Fish Shellfish Immunol ; 131: 1118-1124, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36400369

RESUMO

Krüppel-like factor 2a (KLF2A), a transcription factor of the krüppel-like family, is involved in regulating the immune molecules and is associated with viral infection. However, the function of KLF2A during viral infections in fish remains unclear. In this study, grass carp (Ctenopharyngodon idellus) was used to predict the target genes regulated by KLF2A. The results showed that the candidate target genes included four members of the serpin gene family (serpinb1l2, serpinc1, serpinh1a, and serpinh1b). Dual-luciferase experiments showed that klf2a positively regulates serpinc1 expression. Dose-dependent klf2a overexpression in C. idellus kidney (CIK) cells significantly upregulated the expression of serpinc1. Overexpressing klf2a or serpinc1 in CIK cells activated interferon responses and suppressed grass carp reovirus (GCRV) replication. Klf2a and serpinc1 co-expression inhibited GCRV replication. These results show that klf2a upregulates serpinc1 mRNA expression, promotes type 1 interferon responses, and suppresses GCRV infection. This study provides insights into the regulatory role and biological functions of KLF2A in host-virus interactions in fish.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Carpas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Peixes , Reoviridae/fisiologia , Interferon Tipo I/genética , Rim/metabolismo
5.
Immun Ageing ; 19(1): 28, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655223

RESUMO

BACKGROUND: Grass carp are an important farmed fish in China that are infected by many pathogens, especially grass carp reovirus (GCRV). Notably, grass carp showed age-dependent susceptibility to GCRV; that is, grass carp not older than one year were sensitive to GCRV, while those over three years old were resistant to this virus. However, the underlying mechanism remains unclear. Herein, whole genome-wide DNA methylation and gene expression variations between susceptible five-month-old (FMO) and resistant three-year-old (TYO) grass carp were investigated aiming to uncover potential epigenetic mechanisms. RESULTS: Colorimetric quantification revealed that the global methylation level in TYO fish was higher than that in FMO fish. Whole-genome bisulfite sequencing (WGBS) of the two groups revealed 6214 differentially methylated regions (DMRs) and 4052 differentially methylated genes (DMGs), with most DMRs and DMGs showing hypermethylation patterns in TYO fish. Correlation analysis revealed that DNA hypomethylation in promoter regions and DNA hypermethylation in gene body regions were associated with gene expression. Enrichment analysis revealed that promoter hypo-DMGs in TYO fish were significantly enriched in typical immune response pathways, whereas gene body hyper-DMGs in TYO fish were significantly enriched in terms related to RNA transcription, biosynthesis, and energy production. RNA-seq analysis of the corresponding samples indicated that most of the genes in the above terms were upregulated in TYO fish. Moreover, gene function analysis revealed that the two genes involved in energy metabolism displayed antiviral effects. CONCLUSIONS: Collectively, these results revealed genome-wide variations in DNA methylation between grass carp of different ages. DNA methylation and gene expression variations in genes involved in immune response, biosynthesis, and energy production may contribute to age-dependent susceptibility to GCRV in grass carp. Our results provide important information for disease-resistant breeding programs for grass carp and may also benefit research on age-dependent diseases in humans.

6.
PLoS Genet ; 15(9): e1008306, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545789

RESUMO

During vertebrate early embryogenesis, the ventral development is directed by the ventral-to-dorsal activity gradient of the bone morphogenetic protein (BMP) signaling. As secreted ligands, the extracellular traffic of BMP has been extensively studied. However, it remains poorly understood that how BMP ligands are secreted from BMP-producing cells. In this work, we show the dominant role of Marcksb controlling the secretory process of Bmp2b via interaction with Hsp70 in vivo. We firstly carefully characterized the role of Marcksb in promoting BMP signaling during dorsoventral axis formation through knockdown approach. We then showed that Marcksb cell autonomously regulates the trafficking of Bmp2b from producing cell to the extracellular space and both the total and the extracellular Bmp2b was decreased in Marcksb-deficient embryos. However, neither the zygotic mutant of marcksb (Zmarcksb) nor the maternal zygotic mutant of marcksb (MZmarcksb) showed any defects of dorsalization. In contrast, the MZmarcksb embryos even showed increased BMP signaling activity as measured by expression of BMP targets, phosphorylated Smad1/5/9 levels and imaging of Bmp2b, suggesting that a phenomenon of "genetic over-compensation" arose. Finally, we revealed that the over-compensation effects of BMP signaling in MZmarcksb was achieved through a sequential up-regulation of MARCKS-family members Marcksa, Marcksl1a and Marcksl1b, and MARCKS-interacting protein Hsp70.3. We concluded that the Marcksb modulates BMP signaling through regulating the secretory pathway of Bmp2b.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Padronização Corporal/fisiologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Via Secretória , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/metabolismo
7.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887035

RESUMO

Mandarin fish has an XX/XY sex-determination system. The female mandarin fish is typically larger than the male. Sex identification and the discovery of genes related to sex determination in mandarin fish have important theoretical significance in the elucidation of the regulation and evolutionary mechanism of animal reproductive development. In this study, the chromosome-level genome of a female mandarin fish was assembled, and we found that LG24 of the genome was an X chromosome. A total of 61 genes on the X chromosome showed sex-biased expression. Only six gonadal genes (LG24G00426, LG24G003280, LG24G003300, LG24G003730, LG24G004200, and LG24G004770) were expressed in the testes, and the expression of the other gene LG24G003870 isoform 1 in the ovaries was significantly higher than that in the testes (p < 0.01). Five (except LG24G003280 and LG24G003300) of the seven aforementioned genes were expressed at the embryonic development stage, suggesting their involvement in early sex determination. The expression of LG24G004770 (encoding HS6ST 3-B-like) was also significantly higher in female muscles than in male muscles (p < 0.01), indicating other functions related to female growth. ZP3 encoded by LG24G003870 isoform 1 increased the C-terminal transmembrane domain, compared with that encoded by other fish zp3 isoforms, indicating their different functions in sex determination or differentiation. This study provides a foundation for the identification of sex-determining genes in mandarin fish.


Assuntos
Peixes , Perciformes , Animais , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Masculino , Perciformes/genética
8.
Gen Comp Endocrinol ; 304: 113722, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33485851

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds and mammals. However, the role of GnIH (Lpxrfa) in teleosts is unknown. In this study, a transgenic zebrafish (Danio rerio) line Tg(gnih:mCherry) was developed to determine the organization of GnIH neurons in the brain. Another transgenic line, Tg(gnih:mCherry; gnrh3:eGFP), was established to determine the positional relationships between GnIH and GnRH3 neurons. In these transgenic lines, the mCherry protein was specifically expressed in GnIH neurons, and eGFP was expressed exclusively in GnRH3 neurons. We found that GnIH cell somata were restricted to the posterior periventricular nucleus (NPPv). Most GnIH neuronal processes projected to the hypothalamus, but a few extended to the posterior tuberculum, telencephalon, and olfactory bulb. GnIH neuronal processes were in close apposition with GnRH3 cell somata and processes in the preoptic-hypothalamic area but were seldom in direct contact. However, in the olfactory bulb, GnIH neuronal processes were in proximity to the terminal nerve GnRH3 cell somata. Neither GnIH cell soma nor neuronal processes were detected in the pituitary, although GnIH receptor mRNAs (npffr1l1, npffr1l2, and npffr1l3) were detected. Intraperitoneal administration of GnIH-3 peptides promoted the transcription of brain gnrh3 as well as pituitary fshß but not lhß. Thus, GnIH cell somata were specifically distributed in the NPPv, and their fibers extended to the hypothalamus and advanced to the telencephalon and olfactory bulb. We conclude that GnIH may directly stimulate terminal nerve GnRH3 neurons in the zebrafish brain.


Assuntos
Hormônios Hipotalâmicos , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Hormônio Luteinizante Subunidade beta , Neurônios/metabolismo , Hipófise/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445609

RESUMO

Most currently available bioreactors have some defects in the expression, activity, or purification of target protein and peptide molecules, whereas the mucus gland of fish can overcome these defects to become a novel bioreactor for the biopharmaceutical industry. In this study, we have evaluated the practicability of developing a mucus gland bioreactor in loach (Paramisgurnus dabryanus). A transgenic construct pT2-krt8-IFN1 was obtained by subcloning the promoter of zebrafish keratin 8 gene and the type I interferon (IFN1) cDNA of grass carp into the SB transposon. The IFN1 expressed in CIK cells exhibited an antiviral activity against the replication of GCRV873 and activated two genes downstream of JAK-STAT signaling pathway. A transgenic loach line was then generated by microinjection of the pT2-krt8-IFN1 plasmids and in vitro synthesized capped SB11 mRNA. Southern blots indicated that a single copy of IFN1 gene was stably integrated into the genome of transgenic loach. The expression of grass carp IFN1 in transgenic loaches was detected with RT-PCR and Western blots. About 0.0825 µg of grass carp IFN1 was detected in 20 µL mucus from transgenic loaches. At a viral titer of 1 × 103 PFU/mL, plaque numbers on plates containing mucus from transgenic loaches reduced by 18% in comparison with those of the control, indicating that mucus of IFN1-transgenic loaches exhibited an antiviral activity. Thus, we have successfully created a mucus gland bioreactor that has great potential for the production of various proteins and peptides.


Assuntos
Reatores Biológicos , Cipriniformes/fisiologia , Glândulas Exócrinas/metabolismo , Muco/metabolismo , Animais , Animais Geneticamente Modificados , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Interferons/metabolismo , Mutagênese Insercional
10.
Fish Shellfish Immunol ; 94: 455-463, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31541774

RESUMO

Galectins, as an evolutionary conserved group of lectin superfamily, has the functions of pathogen recognition, anti-bacteria and anti-virus. In this study, a 405 bp cDNA sequence of galectin 1-like 2 (CiGal1-L2) was obtained from grass carp (Ctenopharyngodon idella), which encoded 134 amino acids with a predicted molecular mass of 15.143 kDa and an isoelectric point of 5.33. The sugar binding motifs (H-N-R, V-N and W--E-R) were detected in carbohydrate-binding domain (CRD). The amino acid sequence similarity showed that CiGal1-L2 was 40.30-42.54% and 66.42-81.20% similarity to mammalian and fish counterparts, respectively. The phylogenetic tree showed that CiGal1-L2 was clustered with fish galectin-1s and closely related to Cyprinus carpio. Real-time quantitative PCR (RT-qPCR) analysis revealed that CiGal1-L2 was widely expressed in all tested tissues. In addition, the expression of CiGal1-L2 was differentially up-regulated challenged with grass carp reovirus (GCRV), lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly I:C). The fluorescence of CiGal1-L2-GFP was distributed in the cytoplasm and nucleus of HEK 293T cells and showed a trend of nuclear translocation after LPS and poly I:C treatment. Finally, the recombinant CiGal1-L2 (rCiGal1-L2) protein showed strong binding ability to LPS. In conclusion, the results provided further insight into the immune roles of galectin-1 in teleost.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Galectina 1/genética , Galectina 1/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Galectina 1/química , Perfilação da Expressão Gênica/veterinária , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Alinhamento de Sequência/veterinária
11.
Fish Shellfish Immunol ; 95: 35-43, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31610292

RESUMO

In mammal, CYP1A has attracted special attention due to its important roles in the oxidative metabolism. In fish, the researches on CYP1A are more focus on its roles in pollution in water environments, but the immune function is unclear. In the study, CiCYP1A gene was cloned from grass carp (Ctenopharyngodon idella). Tissue distribution exhibited an overwhelmingly high basal expression levels in the liver. After GCRV infection, CiCYP1A showed a potent response, indicating CiCYP1A was involved in GCRV-induced immunity. Subcellular localisation showed CiCYP1A was distributed in the cytoplasm. Besides, dual-luciferase activity assays revealed CYP1A was relevant for IFN-I signaling pathway modulation, furthermore, overexpressed CYP1A potently suppressed the mRNA expression of IRF3 and IFN-I but not IRF7. The results provide new sights into exploring immune function of CiCYP1A in teleosts.


Assuntos
Carpas/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/imunologia , Proteínas de Peixes/genética , Imunidade Inata , Animais , Carpas/imunologia , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/imunologia , Filogenia , Transdução de Sinais
12.
Fish Shellfish Immunol ; 86: 335-346, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30500548

RESUMO

T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins from the High Mobility Group (HMG) box family act as the main downstream effectors of the Wnt signaling pathway. HMGB proteins play multifaceted roles in the immune system of mammals. To clarify the immunological characteristics of LEF/TCF genes in grass carp (Ctenopharyngodon idella), five LEF/TCF genes (TCF7, LEF1, TCF7L1A, TCF7L1B, and TCF7L2) were identified and characterized. All five LEF/TCF proteins contained two characteristic domains: a HMG-BOX domain and a CTNNB1_binding region. Phylogenetic tree analysis revealed that the LEF/TCF proteins were represented different lineages. These results of subcellular localization showed that four of the LEF/TCF genes were localized exclusively within the nucleus, while TCF7L2 was localized in the cytoplasm and nucleus. The mRNA expression profiles of these LEF/TCF family genes differed across different tissues. The mRNA expression levels of TCF7, TCF7L1A, and TCF7L2 changed significantly in liver after grass carp reovirus (GCRV) challenge; TCF7 and TCF7L1A responded early while TCF7L2 responded late. This suggests that these genes may participate in GCRV-related immune responses. Moreover, TCF7 promoted Bcl6 transcription in response to the GCRV challenge. These findings further our understanding of the function of LEF/TCF genes in teleosts.


Assuntos
Carpas/genética , Carpas/virologia , Doenças dos Peixes/virologia , Infecções por Reoviridae/veterinária , Reoviridae/imunologia , Animais , Carpas/imunologia , Clonagem Molecular , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Filogenia , RNA Mensageiro , Infecções por Reoviridae/imunologia , Transcriptoma
13.
Fish Shellfish Immunol ; 86: 93-100, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30439497

RESUMO

Grass carp, an economically important aquaculture fish, is very sensitive to Grass Carp Reovirus (GCRV). Haemorrhagic disease caused by GCRV infection can cause large-scale death of first-year grass carp, thereby severely restricting the intensive culture. Serpins (serine protease inhibitors) belong to the protease inhibitor gene family and are involved in numerous physiological and pathological processes, particularly coagulation and anticoagulation. Reports on grass carp serpins are scarce. Thus, we cloned six grass carp serpin genes (serpinb1, serpinc1, serpind1, serpinf1, serpinf2b and serping1) in this study. Molecular evolution showed that serpins between grass carp and zebrafish or carp are the closest relatives. SERPIN domains in these 6 serpins and reactive centre loop (RCL) along with their cleavage sites of 5 serpins (serpinb1, serpinc1, serpind1, serpinf2b and serping1) were predicted. Real-time quantitative PCR (RT-qPCR) showed that these serpins displayed tissue significance. Among them, serpinc1, serpind1, serpinf2b and serping1 had the highest expression levels in the liver. After GCRV infection, RT-qPCR showed that the liver-enriched serpins were significantly changed. Key procoagulant factor genes (kng-1, f2, f3a, f3b and f7) and anticoagulant genes (tpa, plg, thbd, proc and pros) also showed significant changes on the mRNA level. Comprehensive comparative analysis showed that the up-regulated expression of key clotting factor genes was more prominent than that of main anti-coagulation factor genes. Thus, the function of coagulation may be more dominant in grass carp during the GCRV infection, which may cause overproduction of thrombi. The serpins were involved in GCRV infection and liver-enriched serpins participate in the interaction between coagulation and anticoagulation. This study provided new insights into further research on the biological functions of grass carp serpins and clarifying the molecular mechanism of GCRV affecting the homeostasis of grass carp blood environment.


Assuntos
Carpas , Clonagem Molecular , Doenças dos Peixes/virologia , Infecções por Reoviridae/veterinária , Reoviridae , Serpinas/metabolismo , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia , Serpinas/genética
14.
Fish Shellfish Immunol ; 87: 788-795, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30716520

RESUMO

Haemorrhagic disease caused by grass carp reovirus (GCRV) can result in large-scale death of young grass carp, leading to irreparable economic losses that seriously affect large-scale breeding. Protein kinase C (PKC, also known as PRKC) represents a family of serine/threonine protein kinases that includes multiple isozymes in many species. Among these, PKC-θ (PKC theta, also written as PRKCQ) is a novel isoform, mainly expressed in T cells, that is known to be involved in immune system function in mammals. To date, no research on immunological functions of fish Pkc-θ has been reported. To address this issue, we cloned the grass carp pkc-θ gene. Phylogenetic and syntenic analysis showed that this gene is the most evolutionarily conserved relative to zebrafish. Real-time quantitative PCR (RT-qPCR) indicated that pkc-θ was expressed at high levels in the gills and spleen of healthy grass carp. Infection with GCRV down regulated pkc-θ expression in the gills and spleen. Gene products that function upstream and downstream of pkc-θ were up regulated in the gill, but were down-regulated in the spleen. These results suggest that direct or indirect targeting of pkc-θ by GCRV may help the virus evade host immune defences in the spleen. Phorbol ester (PMA) treatment of Jurkat T cells induced translocation of grass carp Pkc-θ from the cytoplasm to the plasma membrane. This response to PMA suggests evolutionary conservation of an immune response function in fish Pkc-θ, as well as conservation of its sequence and structural domains. This study expanded our knowledge of the fish PKC gene family, and explored the role of pkc-θ in function of the grass carp immune system, providing new insights which may facilitate further studies of its biological functions.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteína Quinase C-theta/genética , Proteína Quinase C-theta/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Proteína Quinase C-theta/química , Distribuição Aleatória , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Alinhamento de Sequência/veterinária
15.
Fish Shellfish Immunol ; 87: 62-72, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30610929

RESUMO

Ubiquitination is a post-translational modification of proteins that is widely present in eukaryotic cells. There is increasing evidence that ubiquitinated proteins play crucial roles in the immune response process. In mammals, RING-between-RING (RBR) proteins play a key role in regulating immune signaling as the important E3 ubiquitin ligases during ubiquitination. However, the function of RBR in fish is still unclear. In the present study, six RBR genes (RNF19A, RNF19B, RNF144AA, RNF144AB, RNF144B and RNF217) of grass carp (Ctenopharyngodon idellus) were cloned and characterized. Similar to mammals, all six members of RBR family contained RING, in-between-ring (IBR) and transmembrane (TM) domains. These genes were constitutively expressed in all studied tissues, but the relative expression level differed. Following grass carp reovirus(GCRV) infection, the expression of six RBR genes in liver, gill, spleen and intestine significantly altered. Additionally, their expression in Ctenopharyngodon idellus kidney (CIK) cells was significantly increased after GCRV infection. And deficiency of RNF144B in CIK with small interference RNA (siRNA) up-regulated polyinosinic:polycytidylic acid poly(I:C))-induced inflammatory cytokines production, including IFN-I, TNF-α, IL-6, and transcription factor IRF3, which demonstrated that RNF144B was a negative regulator of inflammatory cytokines. Our results suggested that the RBR might play a vital role in regulating immune signaling and laid the foundation for the further mechanism research of RBR in fishes.


Assuntos
Carpas/genética , Doenças dos Peixes/virologia , Infecções por Reoviridae/veterinária , Animais , Carpas/imunologia , Carpas/virologia , Linhagem Celular , Clonagem Molecular , Citocinas/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Poli I-C/farmacologia , RNA Interferente Pequeno/genética , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia , Análise de Sequência de DNA , Ubiquitinação
16.
Fish Shellfish Immunol ; 84: 312-321, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30287347

RESUMO

Interleukin-1 receptor-associated kinase (IRAK) family members play important roles in myeloid differentiation primary response 88 (MyD88)-dependent toll-like receptor (TLR) signaling, the crucial innate immune pathway in vertebrates. In the present study, the IRAK family gene IRAK-M (also called IRAK3) from grass carp (Ctenopharyngodon idella) was cloned and characterised. IRAK-M was mainly enriched in the spleen, and the significantly altered expression was observed after grass carp reovirus (GCRV) infection. Subcellular localisation showed that IRAK-M protein distributed uniformly in the entire cell and co-localised with MyD88 in the cytoplasm of transfected cells. Additionally, the interaction between IRAK-M and MyD88 was confirmed by bimolecular fluorescence complementation (BiFC) system. Moreover, deficient of IRAK-M in C. idella kidney cell line (CIK) with small interference RNA (siRNA) upregulated polyinosinic:polycytidylic acid (poly(I:C))-induced inflammatory cytokines production, including interleukin 8 (IL-8), IL-6, and tumour necrosis factor α (TNF-α), which reveals that IRAK-M functions as a negative regulator of inflammatory cytokines. Taken together, our results demonstrate that IRAK-M gene plays an important role in innate immune regulation and provide new insights into understanding the functional characteristics of the IRAK-M in teleosts.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/imunologia , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Quinases Associadas a Receptores de Interleucina-1/química , Filogenia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Análise de Sequência de DNA/veterinária
17.
Fish Shellfish Immunol ; 86: 702-712, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30513383

RESUMO

Grass carp is an important fish species in Chinese aquaculture, and can be afflicted by a hemorrhagic disease caused by the grass carp reovirus (GCRV). Interestingly, the affects of GCRV infection of grass carp are age-restricted, meaning that one-year-old grass carp can be infected and can suffer hemorrhagic disease, but three-year-old carp are not so afflicted. In this study, we investigated the mechanism responsible for this age-restricted pathology. We evaluated the relative copy number of GCRV RNA, the expression levels of proteins in blood, and changes in DNA methylation in carp from the two age groups after infection with GCRV. After GCRV infection, the relative copy number of GCRV RNA in three-year-old grass carp was significantly lower than in one-year-old carp. The differences in circulating protein levels mainly occurred in concentrated in complement and coagulation proteins, and the expression levels of these proteins were significantly higher in three-year-old grass carp than in one-year-old carp. Moreover, the expression levels of DNA methylation-related genes in the liver and spleen of one-year-old grass carp were significantly higher than those of three-year-old carp. These results suggested that as age of grass carp increases, faster and more efficient response of the immune system after viral infection, especially the complement system, and differences in DNA methylation may be important factors that affect the age restriction observed in GCRV infection. Our study provides new insights into the mechanisms underlying age restriction of GCRV infection.


Assuntos
Carpas/imunologia , Carpas/virologia , Doenças dos Peixes/imunologia , RNA Viral/análise , Infecções por Reoviridae/veterinária , Fatores Etários , Animais , Aquicultura , Metilação de DNA , Doenças dos Peixes/virologia , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , RNA Viral/genética , Reoviridae/genética , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia
18.
Fish Shellfish Immunol ; 88: 627-635, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30890433

RESUMO

Tripartite motif (TRIM) proteins are key components of the innate immune system, functioning as antiviral restriction factors or modulating signaling cascades that lead to proinflammatory cytokine induction. In the present study, the TRIM family gene TRIM23 from grass carp (Ctenopharyngodon idella) was cloned and characterised. TRIM23 was moderately expressed in the examined tissues, and the significantly altered expression was observed after grass carp reovirus (GCRV) and poly(I:C) infection. Dual-luciferase activity assay showed that TRIM23, especially its C-terminal domain ARF, depressed the promoter activity of IRF3 and IRF7. The subcellular localisation showed that TRIM23 protein was located in the cytoplasm and could be recruited by both TRAF6 and MyD88. Furthermore, TRIM23 was confirmed to interact with either TRAF6 or MyD88 by the bimolecular fluorescence complementation (BiFC) system in CIK cells. Additionally, autophagy was enhanced by over-expressed TRIM23 in 293T cells. Taken together, our results demonstrate that TRIM23 gene plays an important role in innate immune regulation and provide new insights into understanding the functional characteristics of the TRIM23 in teleosts.


Assuntos
Carpas/genética , Proteínas de Peixes/genética , Imunidade Inata , Proteínas com Motivo Tripartido/genética , Animais , Autofagia , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fator 88 de Diferenciação Mieloide/metabolismo , Filogenia , Poli I-C/farmacologia , Regiões Promotoras Genéticas , Infecções por Reoviridae/imunologia , Análise de Sequência de DNA , Fator 6 Associado a Receptor de TNF/metabolismo
19.
Fish Shellfish Immunol ; 92: 600-611, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31252046

RESUMO

Autophagy is an essential and conserved process that plays an important role in physiological homeostasis, adaptive response to stress and the immune response. Autophagy-related proteins (ATGs) are key components of the autophagic machinery. In the study, grass carp (Ctenopharyngodon idella) autophagy-related gene 5 (ATG5) and 12 (ATG12) were identified. In the gill and intestine, ATG5 and ATG12 were highly expressed, but after grass carp reovirus (GCRV) infection, they were decreased significantly. In Ctenopharyngodon idella kidney (CIK) cells, the sharp variation of ATG5 and ATG12 expression was observed after poly(I:C) infection. Subcellular localisation showed that ATG5 and ATG12 were evenly distributed in the cytoplasm and nucleus. However, the interaction between ATG5 and ATG12 was only found in cytoplasm in both 293T cells and CIK cells. In addition, the overexpression of ATG5 or ATG12 in 293T cells showed enhanced autophagy, and autophagic process was facilitated when ATG5 and ATG12 were simultaneously overexpressed. Dual-luciferase activity assay indicated that both ATG5 and ATG12 remarkably suppressed the promoter activity of IRF3, IRF7, and IFN-I. Further, ATG5 and ATG12 conjugate showed far stronger inhibitory affection on the expression of IFN-I than either ATG5 or ATG12 in response to poly(I:C) or GCRV infection. Taken together, the results demonstrate that grass carp ATG5 and ATG12 play an important role in innate immunity and autophagy.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Autofagia/genética , Carpas/genética , Carpas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Animais , Proteína 12 Relacionada à Autofagia/imunologia , Proteína 5 Relacionada à Autofagia/imunologia , Regulação para Baixo/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Transdução de Sinais
20.
Fish Shellfish Immunol ; 90: 395-403, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054357

RESUMO

Peroxiredoxin (Prx) family are known as an important antioxidant enzyme as the first line of defense against oxidative damage, and also involved in immune responses following viral and bacterial infection. Here, a full-length Prx1 cDNA sequence (CiPrx1) was cloned from grass carp (Ctenopharyngodon idella), which was 1029 bp, including a 5'-terminal untranslated region (UTR) of 121 bp, a 3'-UTR of 272 bp, an open reading frame of 600 bp encoding 199 amino acids with molecular weight of 22.21 kDa and isoelectric point of 6.30. CiPrx1 shares 80.8-99% protein sequence similarity with Prx1 of other fishes. The conserved peroxidase catalytic center "FYPLDFTFVCPTEI" and "GEVCPA" were observed in the sequence of CiPrx1; this indicated that it was a member of 2-Cys Prx. Subcellular localization of CiPrx1 was only strongly distributed in the cytoplasm. Quantitative real-time PCR (RT-qPCR) assays revealed that CiPrx1 mRNA was ubiquitously detected in all tested tissues, and the expression was comparatively high in liver, gill and spleen. Further, the expression of CiPrx1 can be induced by grass carp reovirus (GCRV), lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C) infection in the different tissues. Moreover, the recombinant CiPrx1 (rCiPrx1) protein was found a potential antioxidant enzyme, that could inhibit DNA damage from oxidants. Altogether, our results imply that CiPrx1 is associated with defending against virus and bacteria pathogens and oxidants in grass carp.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Peroxirredoxinas/genética , Peroxirredoxinas/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Lipopolissacarídeos/farmacologia , Peroxirredoxinas/química , Filogenia , Poli I-C/farmacologia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Alinhamento de Sequência/veterinária
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa