Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(5): 2171-2178, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34995077

RESUMO

The coordinated configuration of atomic platinum (Pt) has always been identified as an active site with high intrinsic activity for hydrogen evolution reaction (HER). Herein, we purposely synthesize single vacancies in a carbon matrix (defective graphene) that can trap atomic Pt to form the Pt-C3 configuration, which gives exceptionally high reactivity for HER in both acidic and alkaline solutions. The intrinsic activity of Pt-C3 site is valued with a turnover frequency (TOF) of 26.41 s-1 and mass activity of 26.05 A g-1 at 100 mV, respectively, which are both nearly 18 times higher than those of commercial 20 wt % Pt/C. It is revealed that the optimal coordination Pt-C3 has a stronger electron-capture ability and lower Gibbs free energy difference (ΔG), resulting in promoting the reduction of adsorbed H+ and the acceleration of H2 desorption, thus exhibiting the extraordinary HER activity. This work provides a new insight on the unique coordinated configuration of dispersive atomic Pt in defective C matrix for superior HER performance.

2.
Angew Chem Int Ed Engl ; 61(4): e202112880, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34694675

RESUMO

The melting behaviour of metal-organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through melt-quenching of the cobalt-based zeolitic imidazolate framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co-Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device assembly.

3.
Small ; 17(20): e2100121, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792164

RESUMO

Water electrolysis, which is a promising high-purity H2 production method, lacks pH-universality; moreover, highly efficient electrocatalysts that accelerate the sluggish anodic oxygen evolution reaction (OER) are scarce. Geometric structure engineering and electronic structure modulation can be efficiently used to improve catalyst activity. Herein, a facile Ar plasma treatment method to fabricate a composite of uniformly dispersed iridium-copper oxide nanoclusters supported on defective graphene (DG) to form IrCuOx @DG, is described. Acid leaching can be used to remove Cu atoms and generate porous IrOx nanoclusters supported on DG (P-IrOx @DG), which can serve as efficient and robust pH-universal OER electrocatalysts. Moreover, when paired with commercial 20 wt% Pt/C, P-IrOx @DG can deliver current densities of 350.0, 317.6, and 47.1 mA cm-2 at a cell voltage of 2.2 V for overall water splitting in 0.5 m sulfuric acid, 1.0 m potassium hydroxide, and 1.0 m phosphate buffer solution, respectively, outperforming commercial IrO2 and nonporous IrOx nanoclusters supported on DG (O-IrOx @DG). Probing experiment, X-ray absorption spectroscopy, and theoretical calculation results demonstrate that Cu removal can successfully create P-IrOx nanoclusters and introduce unsaturated Ir atoms. The optimum binding energies of oxygenated intermediate species on unsaturated Ir sites and ultrafine IrOx nanoclusters contribute to the high intrinsic OER catalytic activity of P-IrOx @DG.

4.
Angew Chem Int Ed Engl ; 59(34): 14664-14670, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32495475

RESUMO

The oxygen vacancies of defective iron-cobalt oxide (FeCoOx -Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co-S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx -Vo-S to exhibit much superior OER activity. FeCoOx -Vo-S exhibits a mass activity of 2440.0 A g-1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2 . The Tafel slope is as low as 21.0 mV dec-1 , indicative of its excellent charge transfer rate. When FeCoOx -Vo-S (anode catalyst) is paired with the defective CoP3 /Ni2 P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm-2 and 406.0 mA cm-2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.

5.
Angew Chem Int Ed Engl ; 59(15): 6122-6127, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31960551

RESUMO

Atomic metal catalysis (AMC) provides an effective way to enhance activity for the oxygen reduction reaction (ORR). Cobalt anchored on nitrogen-doped carbon materials have been extensively reported. The carbon-hosted Co-N4 structure was widely considered as the active site; however, it is very rare to investigate the activity of Co partially coordinated with N, for example, Co-N4-x Cx . Herein, the activity of Co-N4-x Cx with tunable coordination environment is investigated as the active sites for ORR catalysis. The defect (di-vacancies) on carbon is essential for the formation of Co-N4-x Cx . N species play two important roles in promoting the intrinsic activity of atomic metal catalyst: N coordinated with Co to manipulate the reactivity by modification of electronic distribution and N helped to trap more Co to increase the number of active sites.

6.
Angew Chem Int Ed Engl ; 58(38): 13565-13572, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31328904

RESUMO

Metal-organic framework (MOFs) two-dimensional (2D) nanosheets have many coordinatively unsaturated metal sites that act as active centres for catalysis. To date, limited numbers of 2D MOFs nanosheets can be obtained through top-down or bottom-up synthesis strategies. Herein, we report a 2D oxide sacrifice approach (2dOSA) to facilely synthesize ultrathin MOF-74 and BTC MOF nanosheets with a flexible combination of metal sites, which cannot be obtained through the delamination of their bulk counterparts (top-down) or the conventional solvothermal method (bottom-up). The ultrathin iron-cobalt MOF-74 nanosheets prepared are only 2.6 nm thick. The sample enriched with surface coordinatively unsaturated metal sites, exhibits a significantly higher oxygen evolution reaction reactivity than bulk FeCo MOF-74 particles and the state-of-the-art MOF catalyst. It is believed that this 2dOSA could provide a new and simple way to synthesize various ultrathin MOF nanosheets for wide applications.

7.
Angew Chem Int Ed Engl ; 58(28): 9404-9408, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31106512

RESUMO

Atomic metal species-based catalysts (AMCs) show remarkable possibilities in various catalytic reactions. The coordination configuration of the metal atoms has been widely recognized as the determining factor to the electronic structure and the catalytic activity. However, the synergistic effect between the adjacent layers of the multilayered AMCs is always neglected. We reported an atomic Co and Pt co-trapped carbon catalyst, which exhibits a ultrahigh activity for HER in the wide range of pH (η10 =27 and 50 mV in acidic and alkaline media, respectively) with ultralow metal loadings (1.72 and 0.16 wt % for Co and Pt, respectively), which is much superior to the commercial Pt/C. Theoretical analysis reveals that the atomic metals on the inner graphitic layers significantly alter the electronic structure of the outmost layer, thus tailoring the HER activity. This finding arouses a re-thinking of the intrinsic activity origins of AMCs and suggests a new avenue in the structure design of AMCs.

8.
J Am Chem Soc ; 140(34): 10757-10763, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30081632

RESUMO

Platinum (Pt) is the state-of-the-art catalyst for oxygen reduction reaction (ORR), but its high cost and scarcity limit its large-scale use. However, if the usage of Pt reduces to a sufficiently low level, this critical barrier may be overcome. Atomically dispersed metal catalysts with high activity and high atom efficiency have the possibility to achieve this goal. Herein, we report a locally distributed atomic Pt-Co nitrogen-carbon-based catalyst (denoted as A-CoPt-NC) with high activity and robust durability for ORR (267 times higher than commercial Pt/C in mass activity). The A-CoPt-NC shows a high selectivity for the 4e- pathway in ORR, differing from the reported 2e- pathway characteristic of atomic Pt catalysts. Density functional theory calculations suggest that this high activity originates from the synergistic effect of atomic Pt-Co located on a defected C/N graphene surface. The mechanism is thought to arise from asymmetry in the electron distribution around the Pt/Co metal centers, as well as the metal atoms' coordination with local environments on the carbon surface. This coordination results from N8V4 vacancies (where N8 represents the number of nitrogen atoms and V4 indicates the number of vacant carbon atoms) within the carbon shell, which enhances the oxygen reduction reaction via the so-called synergistic effect.

9.
Angew Chem Int Ed Engl ; 57(50): 16421-16425, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30332523

RESUMO

Various strategies, such as increasing active site numbers and structural and surface engineering, have been used to improve the oxygen evolution reaction (OER) performance of transition-metal dichalcogenides. However, it is challenging to combine these strategies in one system to realize the full catalytic potential. Now, an Ar/O2 plasma method is used to simultaneously induce exfoliation, surface reorganization (formation of an oxidative layer with rich oxygen vacancies), and phase transformation (cubic-to-orthorhombic) on CoSe2 to generate an exceptionally outstanding OER electrocatalysts. The as-made samples require an overpotential of only 251 mV at 10 mA cm-2 , outperforming commercial RuO2 and most reported OER catalysts. The striking catalytic activity originates from the optimized chemical and electronic environment. This work provides valuable insights into the design of promising OER electrocatalysts with high natural abundance via multilevel structural modulation.

10.
J Environ Manage ; 168: 142-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26706226

RESUMO

A low-cost solid amine adsorbent for CO2 capture was prepared by using sugarcane bagasse (SB), a dominant agro-industrial residue in the sugar and alcohol industry as raw materials. In this preparation process, acrylamide was grafted on SB, and the grafted fiber was then aminated with different type of amine reagents to introduce primary and secondary amine groups onto the surface of SB fibers. The graft and amination conditions were optimized. The prepared solid amine adsorbent showed remarkable CO2 adsorption capacity and the adsorption capacity of the solid amine adsorbent could reach 5.01 mmol CO2/g at room temperature. The comparison of adsorption capacities of amine fibers aminated with various amination agents demonstrated that fibers aminated with triethylenetetramine would obtain higher adsorption capacities and higher amine efficiency. These adsorbents also showed good regeneration performance, the regenerated adsorbent could maintain almost the same adsorption capacity for CO2 after 10 recycles.


Assuntos
Aminas/química , Dióxido de Carbono/química , Celulose/química , Recuperação e Remediação Ambiental/métodos , Saccharum , Acrilamida/química , Adsorção , Aminação , Saccharum/química
11.
Small Methods ; : e2301419, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315088

RESUMO

The development of the proton exchange membrane water electrolyzer (PEMWE) is still limited by the prohibitive cost and scarcity of iridium (Ir)-based oxygen evolution reaction (OER) catalyst. This work presents a novel catalyst synthesized by precursor-atomization and rapid joule-heating method, successfully doping iridium atoms into polyvalent tungsten blends (W0 , W5+ , W6+ ) based on titanium substrate. The vacancy engineering of unsaturated tungsten oxide (W5+ , W6+ ) reconstructs the electronic structure of the catalyst surface, which resulting in the low-valence state iridium species, avoiding excessive oxidation of iridium and accelerating the catalytic kinetics. Meanwhile, metallic tungsten (W0 ) improves the conductivity of catalyst and guarantees the stable existence of oxygen vacancy. The TiIrWOx possesses excellent performance in acidic OER catalysis, requiring overpotential of only 181 mV to drive 10.0 mA cm-2 , and exhibiting a high mass activity of 753 A gIr -1 at an overpotential of 300 mV. The membrane electrode assembly (MEA) with TiIrWOx as anode electrocatalyst can reduce the Ir consumption amount by >60% compared to commercial IrO2 , and it can operated over 120 h at a current density of 1.0 A cm-2 .

12.
Adv Sci (Weinh) ; 10(8): e2205920, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683162

RESUMO

Designing an efficient and durable electrocatalyst for the sluggish anodic oxygen evolution reaction (OER) has been the primary goal of using proton exchange membrane electrolyzer owing to the highly acidic and oxidative environment at the anode. In this work, it is reported that high-valence manganese drives the strong anchoring of the Ir species on the manganese dioxide (MnO2 ) matrix via the formation of an Mn-O-Ir coordination structure through a hydrothermal-redox reaction. The iridium (Ir)-atom-array array is firmly anchored on the Mn-O-Ir coordination structure, endowing the catalyst with excellent OER activity and stability in an acidic environment. Ir-MnO2 (160)-CC shows an ultralow overpotential of 181 mV at j = 10 mA cm-2 and maintains long-term stability of 180 h in acidic media with negligible decay, superior to most reported electrocatalysts. In contrast, when reacting with low-valence MnO2 , Ir species tend to aggregate into IrOx nanoparticles, leading to poor OER stability. Density functional theory (DFT) calculations further reveal that the formation of the Mn-O-Ir coordination structure can optimize the adsorption strength of *OOH intermediates, thus boosting the acidic OER activity and stability.

13.
J Colloid Interface Sci ; 626: 995-1002, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35839680

RESUMO

Rational design of low-cost and efficient electrocatalyst for the anodic oxygen evolution reaction (OER) to replace noble-metal-based catalysts is greatly desired for the large-scale application of water electrocatalysis. And compared with the conventional powdery catalysts, the freestanding electrode architecture is more attractive owing to the enhanced kinetics and stability. In this work, we report an electrospinning-carbonization-post oxidation strategy to develop the freestanding N-doped carbon nanofibers anchored with Ni/NiO nanoparticles (denoted as Ni/NiO-NCNFs) as efficient OER electrocatalyst. In the synthesized Ni/NiO-NCNFs, the conductive ultrathin carbon layer could promote electron transfer and thus improve the electrocatalytic activity. Meanwhile, the ratio between Ni and NiO could be regulated by tuning the oxidation duration, so as to optimize the adsorption energy of intermediates and improve the OER activity. The Ni/NiO-NCNFs prepared with the oxidation time of 3 h exhibit a promising OER activity and long-term operation durability in 0.1 M KOH solution, requiring an overpotential as small as 153 mV to achieve a current density of 10 mA cm-2. Its overpotential is far lower than that of the reported OER catalysts. This work offers an efficient pathway to develop low-cost and highly active freestanding transitional metal-based OER electrocatalyst for potential renewable electrochemical energy conversion.

14.
Adv Sci (Weinh) ; 9(25): e2202387, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35798320

RESUMO

Seawater electrolysis is an attractive technique for mass production of high-purity hydrogen considering the abundance of seawater. Nevertheless, due to the complexity of seawater environment, efficient anode catalyst, that should be, cost effective, highly active for oxygen evolution reaction (OER) but negligible for Cl2 /ClO- formation, and robust toward chlorine corrosion, is urgently demanded for large-scale application. Although catalysis typically appears at surface, while the bulk properties and morphology structure also have a significant impact on the performance, thus requiring a systematic optimization. Herein, a multiscale engineering approach toward the development of cost-effective and robust OER electrocatalyst for operation in seawater is reported. Specifically, the engineering of hollow-sphere structure can facilitate the removal of gas product, while atom-level synergy between Co and Fe can promote Co sites transforming to active phase, and in situ transformation of sulfate ions layer protects catalysts from corrosion. As a result, the as-developed hollow-sphere structured CoFeSx electrocatalyst can stably operate at a high current density of 100 mA cm-2 in the alkaline simulated seawater (pH = 13) for 700 h and in a neutral seawater for 20 h without attenuation. It provides a new strategy for the development of electrocatalysts with a broader application potential.

15.
Adv Mater ; 34(26): e2201422, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35429018

RESUMO

Cancers heavily threaten human life; therefore, a high-accuracy diagnosis is vital to protect human beings from the suffering of cancers. While biopsies and imaging methods are widely used as current technologies for cancer diagnosis, a new detection platform by metabolic analysis is expected due to the significant advantages of fast, simple, and cost-effectiveness with high body tolerance. However, the signal of molecule biomarkers is too weak to acquire high-accuracy diagnosis. Herein, precisely engineered metal-organic frameworks for laser desorption/ionization mass spectrometry, allowing favorable charge transfer within the molecule-substrate interface and mitigated thermal dissipation by adjusting the phonon scattering with metal nodes, are developed. Consequently, a surprising signal enhancement of ≈10 000-fold is achieved, resulting in diagnosis of three major cancers (liver/lung/kidney cancer) with area-under-the-curve of 0.908-0.964 and accuracy of 83.2%-90.6%, which promises a universal detection tool for large-scale clinical diagnosis of human cancers.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Estruturas Metalorgânicas/química , Metais/química , Neoplasias/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
Nanoscale ; 13(6): 3327-3345, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33564804

RESUMO

Electrocatalysis plays a decisive role in various energy-related applications. Engineering the active sites of electrocatalysts is an important aspect to promote their catalytic performance. In particular, defect engineering provides a feasible and efficient approach to improve the intrinsic activities and increase the number of active sites in electrocatalysts. In this review, recent investigations on defect engineering of a wide range of electrocatalysts such as metal-free carbon materials, transition metal oxides, transition metal dichalcogenides and metal-organic frameworks (MOFs) will be summarized. Different defect creation strategies will be outlined, for example, heteroatom doping and removal, plasma irradiation, hydrogenation, amorphization, phase transition and reduction treatment. In addition, we will overview the commonly used advanced characterization techniques that could confirm the existence and identify the detailed structures, types and concentration of defects in electrocatalysts. The defect characterization tools are beneficial for gaining an in-depth understanding of defects on electrocatalysis and thus could reveal the structure-performance relationship. Finally, the major challenges and future development directions on defect engineering of electrocatalysts will be discussed.

17.
ChemSusChem ; 14(14): 2972-2983, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34041864

RESUMO

Electrochemical recovery of the cobalt in deep eutectic solvent shows its promise in recycling and recovery of valuable elements from the spent lithium-ion battery due to its high selectivity and minimal environmental impacts. This work unveiled the roles of the substrates, applied potentials, and operating temperatures on the performance of cobalt electrochemical recovery in a deep eutectic choline chloride+urea solvent. The solvent contains cobalt and lithium ions extracted from lithium cobalt oxides - 3an essential lithium-ion battery cathode material. Our results highlight that the substrate predetermines the cobalt recovery modes via substrate-cobalt interactions, which could be predicted by the cobalt surface segregation energies and crystallographic misfits. We also show that a moderate cathode potential under -1.0 V vs. silver quasi-reference electrode at 94-104 °C is essential to ensure a selective cobalt recovery at an optimal rate. We also found that the stainless-steel mesh is an optimal substrate for cobalt recovery due to its relatively high selectivity, fast recovery rate, and easy cobalt collection. Our work provides new insights on metal recovery in deep eutectic solvents and offers a new avenue to control the metal electrodeposition modes via modulation of substrate compositions and crystal structures.

18.
Chem Asian J ; 15(23): 3995-3999, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497378

RESUMO

Oxygen evolution reaction (OER) as the rate-determining reaction of water splitting has been attracting enormous attention. At present, only some noble-metal oxide materials (IrO2 and RuO2 ) have been reported as efficient OER electrocatalysts for OER. However, the high cost and scarcity of these noble-metal oxide materials greatly hamper their large-scale practical application. Herein, we synthesize 100% (111) faceted NiFe2 O4 single crystals with multiple vacancies (cation vacancies and O vacancies). The (111) facets can supply enough platform to break chemical bonds and enhance electrocatalytic activity, due to its high density of atomic steps and kink atoms. Compared to NiFe2 O4 (without vacancies), the as-synthesized NiFe2 O4 -Ar (with vacancies) exhibits a dramatically improved OER activity. The NiFe2 O4 -Ar-30 shows the lowest onset potential (1.45 V vs RHE) and the best electrocatalytic OER activity with the lowest overpotential of 234 mV at 50 mA cm-2 . Furthermore, based on the theoretical calculations that the introduction of multiple vacancies can effectively modulate the electronic structure of active centers to accelerate charge transfer and reaction intermediates adsorption, which can reduce the reaction energy barrier and enhance the activity of electrochemical OER.

19.
Adv Mater ; 32(32): e2003493, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32596981

RESUMO

Manipulating the surface structure of electrocatalysts at the atomic level is of primary importance to simultaneously achieve the activity and stability dual-criteria in oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, a durable acidic ORR electrocatalyst with the "defective-armored" structure of Pt shell and Pt-Ni core nanoparticle decorated on graphene (Pt-Ni@PtD /G) using a facile and controllable galvanic replacement reaction to generate gradient distribution of Pt-Ni composition from surface to interior, followed by a partial dealloying approach, leaching the minor nickel atoms on the surface to generate defective Pt skeleton shell, is reported. The Pt-Ni@PtD /G catalyst shows impressive performance for ORR in acidic (0.1 m HClO4 ) electrolyte, with a high mass activity of threefold higher than that of Pt/C catalyst owing to the tuned electronic structure of locally concave Pt surface sites through synergetic contributions of Pt-Ni core and defective Pt shell. More importantly, the electrochemically active surface areas still retain 96% after 20 000 potential cycles, attributing to the Pt atomic shell acting as the protective "armor" to prevent interior Ni atoms from further dissolution during the long-term operation.

20.
ACS Appl Mater Interfaces ; 11(47): 44300-44307, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31679334

RESUMO

Metal-organic frameworks (MOFs) have recently emerged as promising electrocatalysts because of their atomically dispersed metal sites and porous structures. The active sites of MOF catalysts largely exist as coordinatively unsaturated metal sites (CUMSs). In this study, facile microwave-induced plasma engraving is applied to fine-tune the CUMSs of cobalt-based MOF (Co-MOF-74) without destroying its phase integrity by controlling the plasma-engraving species, intensity, and duration. The electrochemical activity of the engraved MOF is found to be quantitatively correlated to the coordination geometry of the metal centers corresponding to CUMSs. Specifically, the hydrogen plasma-engraved Co-MOF-74 shows an enhanced catalytic activity of oxygen evolution reaction, which exhibits a low overpotential (337 mV at 15 mA cm-2), high turnover frequency (0.0219 s-1), and large mass activity (54.3 A g-1). The developed CUMS control strategy and the revealed CUMSs activity correlation can inspire the further microstructure tuning of MOFs for various applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa