Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2319519121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753508

RESUMO

Transforming smallholder farms is critical to global food security and environmental sustainability. The science and technology backyard (STB) platform has proved to be a viable approach in China. However, STB has traditionally focused on empowering smallholder farmers by transferring knowledge, and wide-scale adoption of more sustainable practices and technologies remains a challenge. Here, we report on a long-term project focused on technology scale-up for smallholder farmers by expanding and upgrading the original STB platform (STB 2.0). We created a formalized and standardized process by which to engage and collaborate with farmers, including integrating their feedback via equal dialogues in the process of designing and promoting technologies. Based on 288 site-year of field trials in three regions in the North China Plain over 5 y, we find that technologies cocreated through this process were more easily accepted by farmers and increased their crop yields and nitrogen factor productivity by 7.2% and 28.1% in wheat production and by 11.4% and 27.0% in maize production, respectively. In promoting these technologies more broadly, we created a "one-stop" multistakeholder program involving local government agencies, enterprises, universities, and farmers. The program was shown to be much more effective than the traditional extension methods applied at the STB, yielding substantial environmental and economic benefits. Our study contributes an important case study for technology scale-up for smallholder agriculture. The STB 2.0 platform being explored emphasizes equal dialogue with farmers, multistakeholder collaboration, and long-term investment. These lessons may provide value for the global smallholder research and practitioners.


Assuntos
Agricultura , China , Agricultura/métodos , Fazendeiros , Humanos , Produtos Agrícolas/crescimento & desenvolvimento , Comportamento Cooperativo , Zea mays/crescimento & desenvolvimento , Desenvolvimento Sustentável , Conservação dos Recursos Naturais/métodos , Triticum/crescimento & desenvolvimento , Produção Agrícola/métodos
2.
Environ Sci Technol ; 58(12): 5310-5324, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38482792

RESUMO

Global interest grows in blue foods as part of sustainable diets, but little is known about the potential and environmental performance of blue foods from rice-animal coculture systems. Here, we compiled a large experimental database and conducted a comprehensive life cycle assessment to estimate the impacts of scaling up rice-fish and rice-crayfish systems in China. We find that a large amount of protein can be produced from the coculture systems, equivalent to ∼20% of freshwater aquaculture and ∼70% of marine wild capture projected in 2030. Because of the ecological benefits created by the symbiotic relationships, cocultured fish and crayfish are estimated to be carbon-negative (-9.8 and -4.7 kg of CO2e per 100 g of protein, respectively). When promoted at scale to displace red meat, they can save up to ∼98 million tons of greenhouse gases and up to ∼13 million hectares of farmland, equivalent to ∼44% of China's total rice acreage. These results suggest that rice-animal coculture systems can be an important source of blue foods and contribute to a sustainable dietary shift, while reducing the environmental footprints of rice production. To harvest these benefits, robust policy supports are required to guide the sustainable development of coculture systems and promote healthy and sustainable dietary change.


Assuntos
Gases de Efeito Estufa , Oryza , Animais , Técnicas de Cocultura , Alimentos , Dieta
3.
Environ Sci Technol ; 56(13): 9302-9311, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35728519

RESUMO

China is facing the dual challenge of achieving food security and agricultural carbon neutrality. Developing spatially explicit crop emission profiles can help inform policy to mitigate agricultural greenhouse gases (GHGs), but previous life-cycle studies were conducted mostly at national and provincial levels. Here, we estimate county-level carbon footprint of China's wheat and maize production based on a nationwide survey and determine the contribution of different strategies to closing regional emission gaps. Results show that crop carbon footprint varies widely between regions, from 0.07 to 3.00 kg CO2e kg-1 for wheat and from 0.09 to 2.30 kg CO2e kg-1 for maize, with inter-county variation generally much higher than interprovince variation. Hotspots are mainly concentrated in Xinjiang and Gansu provinces, owing to intensive irrigation and high plastic mulch and fertilizer inputs. Closing the regional emission gaps would benefit mostly from increasing crop yields and nitrogen use efficiency, but increasing manure use (e.g., in Northeast, East, and Central China) and energy use efficiency (e.g., in North and Northwest China) can also make important contributions. Our county-level carbon footprint estimates improve upon previous broad-scale results and will be valuable for detailed spatial analysis and the design of localized GHG mitigation strategies in China.


Assuntos
Gases de Efeito Estufa , Agricultura , Pegada de Carbono , China , Produtos Agrícolas , Fertilizantes/análise , Efeito Estufa , Gases de Efeito Estufa/análise , Triticum , Zea mays
4.
Nano Lett ; 20(5): 3844-3851, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32283937

RESUMO

The further improvement of sodium ion batteries requires the elucidation of the mechanisms pertaining to reversibility, which allows the novel design of the electrode structure. Here, through a hydrogel-embedding method, we are able to confine the growth of few-layer SnS2 nanosheets between a nitrogen- and sulfur-doped carbon nanotube (NS-CNT) and amorphous carbon. The obtained carbon-sandwiched SnS2 nanosheets demonstrate excellent sodium storage properties. In operando small-angle X-ray scattering combined with the ex situ X-ray absorption near edge spectra reveal that the redox reactions between SnS2/NS-CNT and the sodium ion are highly reversible. On the contrary, the nanostructure evolution is found to be irreversible, in which the SnS2 nanosheets collapse, followed by the regeneration of SnS2 nanoparticles. This work provides operando insights into the chemical environment evolution and structure change of SnS2-based anodes, elucidating its reversible reaction mechanism, and illustrates the significance of engineered carbon support in ensuring the electrode structure stability.

5.
J Environ Manage ; 279: 111600, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160742

RESUMO

Mineral nutrients play a critical role in maintaining plant growth, but are vulnerable to climate change, such as elevated atmospheric carbon dioxide (CO2) concentrations. Previous studies reported that impact of elevated CO2 concentrations on plant growth vary among plant species, which may affect differential mineral nutrient cycling among plant species. However, little is known about how increasing CO2 concentrations affect mineral nutrient uptake and allocation in bamboo species. Using open top chambers (OTCs), we investigated the effects of elevated CO2 concentrations on three key mineral nutrients (iron (Fe), calcium (Ca), and magnesium (Mg)) in two mature bamboo species (Phyllostachys edulis and Oligostachyum lubricum). Results showed increased leaf and root biomass under elevated CO2 concentrations (P. edulis: 30.24% and 10.94%; O. lubricum: 24.47% and 13.84%, respectively). Conversely, elevated CO2 concentrations had negligible effects on the biomass of other bamboo organs (e.g., branches and culms). To a certain extent, elevated CO2 concentrations also caused nutrient variation among the various organs of these two species. For Ph. edulis, elevated CO2 concentrations increased mineral content (Fe, Ca, and Mg) in and allocation to leaves while it decreased Fe and Mg allocation to roots. By contrast, elevated CO2 concentrations only increased mineral content in and allocation to O. lubricum leaves and decreased Mg to its roots. Results confirmed that elevated CO2 concentrations resulted in differential mineral nutrient uptake and allocation response between these two species. Understanding such differences is critical to the sustainable nutrient management of bamboo ecosystems under increasing CO2 concentrations.


Assuntos
Dióxido de Carbono , Ecossistema , Biomassa , Minerais , Nutrientes , Folhas de Planta
6.
J Environ Manage ; 260: 110114, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941636

RESUMO

The prevailing trend in pasture areas worldwide is that of mobile pastoralism to settlement, which produces a positive impact on pastoral livelihoods and livestock husbandry. However, the impact of nomad settlement on the grassland ecosystem is not well documented and remains debatable. In response, from 2001 to 2015, the central Chinese government initiated the Nomad Settlement Policy (NSP). In this study, we conducted a case study of the pastoral area of the Qinghai-Tibetan Plateau, to investigate impact of NSP on grassland ecological conditions including plants, soil and microorganisms. Results showed that grassland ecological conditions presented differentiation characteristics, with changes depending on the distance from settlements. The grassland ecological conditions showed heavy degradation near the settlement based on the classification of Qinghai-Tibetan Plateau grassland degradation, and gradual improvement with increasing distance from the settlement. Based on our investigation and previous studies, we found that intervention of NSP decreased the distance in livestock mobility and led to intensive grazing near the settlement, thereby increased grassland degradation. At the same time, the grassland maintained a relatively good ecological condition with the increase in distance from settlement, which may be attributed to short-period grazing and light trampling effects. Our findings provide new insight into the grassland ecological condition in the aftermath of NSP implementation, and also put forward some measures (e.g. multi-household grazing management, pastoral cooperative) to restore the grassland degradation.


Assuntos
Ecossistema , Solo , Animais , Pradaria , Plantas , Tibet
7.
J Environ Manage ; 243: 381-384, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103683

RESUMO

How substituting compound fertilizer with organic manure affects crop productivity and reactive nitrogen (Nr) losses from vegetable production system during the cradle-to-gate life cycle is not well understood. We thus investigated the impact of substituting compound fertilizer with various organic manures (stored solid manure and composted manure) on spinach productivity, Nr losses (e.g. NH3, N2O, NOx, N-leaching) and yield-based Nr losses in Changsha, Hunan, China. We found that the application of stored solid manure and composted manure decreased the total Nr losses by 58.1% and 75.0%, respectively, compared with compound fertilizer, but the spinach productivity was also decreased by 27.9% and 16.4%. Overall, substituting compound fertilizer with organic manure decreased yield-based Nr loss by 41.9-70.1%. These results highlight that substituting compound fertilizer with organic manure, particularly composted manure, may be beneficial to the environment at the expense of vegetable productivity. Strategies should be developed to decrease Nr losses from N input without compromising productivity in intensive vegetable production system.


Assuntos
Fertilizantes , Esterco , Agricultura , China , Nitrogênio , Solo , Verduras
8.
J Environ Manage ; 242: 40-45, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31026801

RESUMO

Livestock production, an important source for non-CO2 greenhouse gases (GHGs) including methane (CH4) and nitrous oxide (N2O) in China, has changed remarkably over the past decades due to economic development and demand for livestock product. However, the variation of non-CO2 GHGs from China's livestock have not received sufficient attention in existing literature. Here, we examine the spatiotemporal patterns of emissions of CH4 and N2O from main livestock in China as well as their long-term trends during the period 2000-2015. Results suggest that the livestock sourced emissions of non-CO2 GHGs in China experienced three phases: a rapid increase from 2000 to 2006, followed by a sharp drop in 2007 and then a slow increase at a lower level from 2008 to 2015. The 2007 drop reflects the impact of macro-control policies on livestock development and extensive measures taken on livestock to control the flu outbreak that year, and the slower increase from 2008 to 2015 with respect to the period 2000-2006 reflects the changes in livestock categories and a general improvement in production efficiency. Spatiotemporal patterns demonstrate that traditional livestock provinces including Henan, Sichuan, Inner Mongolia, Shandong, Yunnan and Hunan stood out as top six provinces in emission of non-CO2 GHGs in 2015. On the other hand, provinces like Jiangxi, Hubei, Hunan, Yunnan, Inner Mongolia, Liaoning and Xinjiang, identified as the emerging provinces, demonstrate the highest growth rates over the last decades. We find that different livestock categories dominated the difference in pattern of non-CO2 GHG emissions in both provinces with high emissions and those with high growth rates. Mitigation measures and policies suggestions should not only focus on high non-CO2 GHG emissions provinces, but also pay attention to the emerging new sources.


Assuntos
Gases de Efeito Estufa , Animais , China , Gado , Metano , Óxido Nitroso
9.
Nano Lett ; 16(7): 4691-8, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27267432

RESUMO

We developed a method to engineer well-distributed dicobalt phosphide (Co2P) nanoparticles encapsulated in N,P-doped graphene (Co2P@NPG) as electrocatalysts for hydrogen evolution reaction (HER). We fabricated such nanostructure by the absorption of initiator and functional monomers, including acrylamide and phytic acid on graphene oxides, followed by UV-initiated polymerization, then by adsorption of cobalt ions and finally calcination to form N,P-doped graphene structures. Our experimental results show significantly enhanced performance for such engineered nanostructures due to the synergistic effect from nanoparticles encapsulation and nitrogen and phosphorus doping on graphene structures. The obtained Co2P@NPG modified cathode exhibits small overpotentials of only -45 mV at 1 mA cm(-2), respectively, with a low Tafel slope of 58 mV dec(-1) and high exchange current density of 0.21 mA cm(-2) in 0.5 M H2SO4. In addition, encapsulation by N,P-doped graphene effectively prevent nanoparticle from corrosion, exhibiting nearly unfading catalytic performance after 30 h testing. This versatile method also opens a door for unprecedented design and fabrication of novel low-cost metal phosphide electrocatalysts encapsulated by graphene.

10.
Sci Total Environ ; 912: 168842, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043819

RESUMO

Grasslands are one of the most important terrestrial biomes, supporting a wide range of ecological functions and services. Grassland degradation due to overgrazing is a severe issue worldwide, especially in developing regions. However, observations from multiple sources have shown that temperate grasslands in China have significantly increased during the past two decades. It remains controversial what factors have driven the vegetation restoration in this region. In this study, we combined remote-sensing images and field survey datasets to quantify the contributions of different factors to vegetation restoration in six temperate grasslands in northern China. Across the six grasslands, the Normalized Difference Vegetation Index (NDVI) increased by 0.003-0.0319 year-1. The average contributions of grazing exclusion and climate change to the NDVI increase were 49.23 % and 50.77 %, respectively. Precipitation change was the primary climate factor driving vegetation restoration, contributing 50.76 % to the NDVI variance. By contrast, climate warming tended to slow vegetation restoration, and atmospheric CO2 concentration change contributed little to the NDVI increase in the temperate grasslands. These results emphasize the significant contributions of both climate change and human management to grassland vegetation restoration.


Assuntos
Mudança Climática , Pradaria , Humanos , Ecossistema , China , Telemetria , Temperatura
11.
Nat Food ; 5(7): 615-624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38907010

RESUMO

Freshwater aquaculture is an increasingly important source of blue foods but produces substantial methane and nitrous oxide emissions. Marine aquaculture, also known as mariculture, is a smaller sector with a large growth potential, but its climate impacts are challenging to accurately quantify. Here we assess the greenhouse gas emissions from mariculture's aquatic environment in global potentially suitable areas at 10 km resolution on the basis of marine biogeochemical cycles, greenhouse gas measurements from research cruises and satellite-observed net primary productivity. Mariculture's aquatic emissions intensities are estimated to be 1-6 g CH4 kg-1 carcass weight and 0.05-0.2 g N2O kg-1 carcass weight, >98% and >80% lower than freshwater systems. Using a life-cycle assessment approach, we show that mariculture's carbon footprints are ~40% lower than those of freshwater aquaculture based on feed, energy use and the aquatic environment emissions. Adoption of mariculture alongside freshwater aquaculture production could offer considerable climate benefits to meet future dietary protein and nutritional needs.


Assuntos
Ração Animal , Aquicultura , Pegada de Carbono , Água Doce , Aquicultura/métodos , Pegada de Carbono/estatística & dados numéricos , Ração Animal/análise , Gases de Efeito Estufa/análise , Metano/análise , Animais , Água do Mar/química , Óxido Nitroso/análise
12.
Sci Total Environ ; 944: 173819, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857807

RESUMO

Optimizing crop distribution stands as a pivotal approach to climate change adaption, enhancing crop production sustainability, and has been recognized for its immense potential in ensuring food security while minimizing environmental impacts. Here, we developed a climate-adaptive framework to optimize the distribution of staple crops (i.e., wheat, maize, and rice) to meet the multi-dimensional needs of crop production in China. The framework considers the feasibility of the multiple cropping systems (harvesting more than once on a cropland a year) and adopts a multi-dimensional approach, incorporating goals related to crop production, water consumption, and greenhouse gas (GHG) emissions. By optimizing, the total irrigated area of three crops would decrease by 7.7 % accompanied by a substantial 69.8 % increase in rain-fed areas compared to the baseline in 2010. This optimized strategy resulted in a notable 10.0 % reduction in total GHG emissions and a 13.1 % decrease in irrigation water consumption while maintaining consistent crop production levels. In 2030, maintaining the existing crop distribution and relying solely on yield growth would lead to a significant maize production shortfall of 27.0 %, highlighting a looming challenge. To address this concern, strategic adjustments were made by reducing irrigated areas for wheat, rice, and maize by 2.3 %, 12.8 %, and 6.1 %, respectively, while simultaneously augmenting rain-fed areas for wheat and maize by 120.2 % and 55.9 %, respectively. These modifications ensure that production demands for all three crops are met, while yielding a 6.9 % reduction in GHG emissions and a 15.1 % reduction in irrigation water consumption. This optimization strategy offers a promising solution to alleviate severe water scarcity issues and secure a sustainable agricultural future, effectively adapting to evolving crop production demands in China.


Assuntos
Mudança Climática , Produtos Agrícolas , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , China , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Abastecimento de Alimentos/métodos , Abastecimento de Água , Zea mays/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Produção Agrícola/métodos
13.
Science ; 385(6713): eadn3747, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39236181

RESUMO

Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products.


Assuntos
Agricultura , Mudança Climática , Gases de Efeito Estufa , Produtos Agrícolas/crescimento & desenvolvimento , Meio Ambiente , Agroquímicos , Solo/química
14.
Sci Total Environ ; 891: 164530, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268145

RESUMO

The improvement and utilization of saline soil is an important guarantee for cultivating healthy soil, ensuring global food security, and mitigating the negative impacts of climate change. Organic material addition plays a crucial role in soil improvement and remediation, soil carbon sequestration, and improving soil fertilizer and productivity. In order to explore the comprehensive impact of organic material addition on properties of saline soil (including the physical and chemical properties, nutrient fixation, crop yield, and carbon sink capacity), we conducted a global meta-analysis using data from 141 articles. We found that, soil salinization significantly reduced plant biomass (50.1 %), soil organic carbon (20.6 %), and microbial biomass carbon (36.5 %). Meanwhile, it also reduced CO2 flux (25.8 %) and CH4 flux (90.2 %) significantly. Adding organic materials to saline soil significantly increased crop yield (30.4 %), plant biomass (30.1 %), soil organic carbon (62.2 %), and microbial biomass carbon (78.2 %), but also increased CO2 flux (221.9 %) and CH4 flux (29.7 %). Considering the balance of both carbon sequestration and carbon emissions, organic material addition significantly increased the net carbon sequestration by about 5890.7 kg CO2-eq·hm-2·100 d-1 on average. Besides, the organic material addition reduced soil salinity, exchangeable sodium, and pH, and increased >0.25 mm aggregates and soil fertility. Our findings suggest that organic material addition can improve both carbon sequestration in saline soil and crop yield. Considering the huge area of saline soil around the world, this understanding is essential to reduce the saline obstacle, improve the soil carbon sink capacity, ensure food security, and increase farmland reserves.


Assuntos
Sequestro de Carbono , Solo , Solo/química , Agricultura , Carbono/análise , Dióxido de Carbono/análise
15.
Environ Sci Pollut Res Int ; 30(11): 30603-30611, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36437368

RESUMO

Chemical potassium (K) fertilizer plays a crucial role in improving crop productivity, yet its production and application also result in environmental issues including greenhouse gas emission and atmospheric pollution emissions. In addition, the abandon or open burning of crop straw not only causes the wasting of resource, but also creates environmental problems. On-present studies recognize the importance of the substitution of straw resource utilization for chemical K fertilizer, yet whether such action can effectively mitigate the emissions of greenhouse gas and pollutants remains unclear. In this study, we examine the effects of substituting straw for chemical K fertilizer on the emissions of greenhouse gas and pollutants and the associated direct and damage cost implications in China at the provincial level. Results showed that the useable straw contributed 2750 Gg of K from 2000 to 2009 and 3567 Gg from 2010 to 2017, equaling 121% and 57.3% of chemical K fertilizer, respectively. Chemical K fertilizer substitution with straw can also reduce annual emissions of greenhouse gases, ammonia, nitrogen oxide, and fine particulate matter by 664 Gg, 18.5 Gg, 10.7 Gg, and 1.48 Gg, respectively. The average abatement cost reached 4790 million USD during 2000-2009 and 3898 million USD during 2010-2017, respectively. And the mitigation potential of the emissions of greenhouse gas and pollutants and average abatement cost showed a large spatial heterogeneity at the provincial level. Overall, replacing chemical K fertilizer with straw is an efficient strategy to reduce environmental risk and utilize agricultural waste.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Solo/química , Fertilizantes/análise , Potássio , Agricultura/métodos , China , Óxido Nitroso/análise
16.
Nat Food ; 4(3): 236-246, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118263

RESUMO

Agricultural food production is a main driver of global greenhouse gas emissions, with unclear pathways towards carbon neutrality. Here, through a comprehensive life-cycle assessment using data from China, we show that an integrated biomass pyrolysis and electricity generation system coupled with commonly applied methane and nitrogen mitigation measures can help reduce staple crops' life-cycle greenhouse gas emissions from the current 666.5 to -37.9 Tg CO2-equivalent yr-1. Emission reductions would be achieved primarily through carbon sequestration from biochar application to the soil, and fossil fuel displacement by bio-energy produced from pyrolysis. We estimate that this integrated system can increase crop yield by 8.3%, decrease reactive nitrogen losses by 25.5%, lower air pollutant emissions by 125-2,483 Gg yr-1 and enhance net environmental and economic benefits by 36.2%. These results indicate that integrated biochar solutions could contribute to China's 2060 carbon neutrality objective while enhancing food security and environmental sustainability.


Assuntos
Carbono , Gases de Efeito Estufa , Produção Agrícola , Nitrogênio/análise
17.
Sci Total Environ ; 827: 154157, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35240175

RESUMO

The increasing uncertainty related to disaster risk under climate change brings about new challenges for sustainable urban management. The emergence of the urban resilience concept can improve the ability and extent to which cities can absorb and resolve risks, providing insight into the sustainable development of cities and regions. Yet, to date, the impact of climate change on regional urban resilience is not well understood. This paper measures the changes in urban resilience of the Beijing-Tianjin-Hebei (BTH) region from 1998 to 2019, and then explores the contribution of climate influencing factors such as temperature, precipitation and wind speed to urban resilience using econometric models. Results demonstrate the following: (1) Urban resilience shows a large spatial heterogeneity in the BTH region. Overall, Beijing and Tianjin have better and more stable resilience than Hebei Province. (2) Regarding the static impact of climate change on urban resilience, a 1 unit increase in Ln temperature and Ln precipitation will respectively increase Ln resilience by 1.01 units and 0.54 units, indicating that it has a significant positive impact on urban resilience. Each 1 unit increase in Ln wind speed will decrease resilience by 1.65 units, representing a significant negative effect. (3) Regarding the dynamic impact of climate change on urban resilience, a positive 1 unit impact of climatic factors indicates that an increase in temperature will first increase and then decrease urban resilience, and an increase in precipitation and wind speed will initially support improvement in urban resilience. Based on these findings, this article offers policy recommendations to improve urban resilience.


Assuntos
Poluição do Ar , Mudança Climática , Poluição do Ar/análise , Pequim , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Vento
18.
Sci Data ; 9(1): 233, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614078

RESUMO

Excessive use of synthetic nitrogen (N) for Chinese wheat production results in high loss of reactive N loss (Nr; all forms of N except N2) into the environment, causing serious environmental issues. Quantifying Nr loss and its spatial variations therein is vital to optimize N management and mitigate loss. However, accurate, high spatial resolution estimations of Nr from wheat production are lacking due to limitations of data generation and estimation methods. Here, we applied the random forest (RF) algorithm to bottom-up N application rate data, obtained through a survey of millions of farmers, to estimate the Nr loss from wheat production in 2014. The results showed that the average total Nr loss was 52.5 kg N ha-1 (range: 4.6-157.8 kg N ha-1), which accounts for 26.1% of the total N applied. The hotspots for high Nr loss are the same as those high applied N, including northwestern Xinjiang, central-southern Hebei, Shandong, central-northern Jiangsu, and Hubei. Our database could guide regional N management and be used in conjunction with biogeochemical models.

19.
Environ Sci Pollut Res Int ; 28(46): 65410-65415, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34322793

RESUMO

Crop straw open burning is considered as an important source of greenhouse gas and atmospheric pollutants emissions, which affects global climate change and regional air quality. However, due to the limitation of data availability, the current emission estimation of greenhouse gas and atmospheric pollutants from crop straw open burning remains uncertain based on the bottom-up method. Therefore, we re-estimate the greenhouse gas and atmospheric pollutants from crop straw open burning at the county level based on a national questionnaire and the up-to-data emission factors. Results showed that emissions of CO2, CH4, N2O, PM10, PM2.5, NMVOC, NH3, NOx, SO2, CO, BC, and OC from open straw burning are 69250.8 Gg, 242.9 Gg, 4.2 Gg, 771.0 Gg, 539.7 Gg, 498.2 Gg, 34.7 Gg, 200.4 Gg, 24.8 Gg, 3426.5 Gg, 63.0 Gg, and 278.5 Gg, respectively, which were lower than those of previous studies. Maize was the largest contribution, followed by wheat, rice. Hotspots for greenhouse gas and atmospheric pollutants from straw burning are mainly distributed in the 54 counties of northeast China, accounting for 20% of total emissions on average. However, the high emission of maize, wheat, and rice are mainly located at the counties of north China, northeast China, and middle-lower Yangtze River region, respectively. This study not only provides the targeted counties that need decrease further the straw open burning, but also improves the precision of emission estimation that benefits air quality modeling.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Gases de Efeito Estufa , Agricultura , Poluentes Atmosféricos/análise , China , Grão Comestível/química , Monitoramento Ambiental , Inquéritos e Questionários
20.
Environ Pollut ; 291: 118176, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34563844

RESUMO

Organic inputs as a substitution for, or addition to, chemical fertilizers can potentially mitigate N losses. However, it is not well known how their effects on N leaching and runoff depend on application approaches. We conducted a global meta-analysis of 129 studies to compare the effects of organic inputs on N export via leaching and runoff. We compared three application approaches: chemical fertilizer N substituted by organic fertilizer with: 1) equal amounts of total N or, 2) equal amounts of mineral N and 3) additional organic fertilizer N on top of chemical fertilizer. The meta-analysis showed that organic inputs reduced overall N leaching and runoff by 15% and 29%, respectively, without compromising crop yield, and that this effect was significantly influenced by the application approach taken. Organic substitution of chemical fertilizer N with equal amounts of total N decreased both leaching and runoff by more than 30% and hardly affected crop yield. Substitution with equal amounts of mineral N generally increased crop yield by 6% but also increased N leaching by 21%. Organic inputs in addition to chemical fertilizer N did not affect leaching and runoff. The differences between application approaches were reinforced with increased treatment duration. The loss ratios of leaching and runoff were 14% and 4.5%, respectively, from chemical fertilizer, and 9.2% and 2.6%, respectively, from organic fertilizer. The optimal substitution rates differed between leaching (40-60%) and runoff (60-100%) when substitution was based on equal amounts of total N. We conclude that substitution of chemical for organic fertilizer at equal amounts of total N is most effective in reducing N export via leaching and runoff without compromising crop production.


Assuntos
Agricultura , Nitrogênio , Produção Agrícola , Fertilizantes/análise , Nitrogênio/análise , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa