Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Mol Cell ; 66(3): 332-344.e4, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475869

RESUMO

Skeletal muscle is a major site of postprandial glucose disposal. Inadequate insulin action in skeletal myocytes contributes to hyperglycemia in diabetes. Although glucose is known to stimulate insulin secretion by ß cells, whether it directly engages nutrient signaling pathways in skeletal muscle to maintain systemic glucose homeostasis remains largely unexplored. Here we identified the Baf60c-Deptor-AKT pathway as a target of muscle glucose sensing that augments insulin action in skeletal myocytes. Genetic activation of this pathway improved postprandial glucose disposal in mice, whereas its muscle-specific ablation impaired insulin action and led to postprandial glucose intolerance. Mechanistically, glucose triggers KATP channel-dependent calcium signaling, which promotes HDAC5 phosphorylation and nuclear exclusion, leading to Baf60c induction and insulin-independent AKT activation. This pathway is engaged by the anti-diabetic sulfonylurea drugs to exert their full glucose-lowering effects. These findings uncover an unexpected mechanism of glucose sensing in skeletal myocytes that contributes to homeostasis and therapeutic action.


Assuntos
Glicemia/metabolismo , Metabolismo Energético , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Canais KATP/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Período Pós-Prandial , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145023

RESUMO

Insulin resistance and ß-cell dysfunction are two main molecular bases yet to be further elucidated for type 2 diabetes (T2D). Accumulating evidence indicates that stimulator of interferon genes (STING) plays an important role in regulating insulin sensitivity. However, its function in ß-cells remains unknown. Herein, using global STING knockout (STING-/-) and ß-cell-specific STING knockout (STING-ßKO) mouse models, we revealed a distinct role of STING in the regulation of glucose homeostasis through peripheral tissues and ß-cells. Specially, although STING-/- beneficially alleviated insulin resistance and glucose intolerance induced by high-fat diet, it surprisingly impaired islet glucose-stimulated insulin secretion (GSIS). Importantly, STING is decreased in islets of db/db mice and patients with T2D, suggesting a possible role of STING in ß-cell dysfunction. Indeed, STING-ßKO caused glucose intolerance due to impaired GSIS, indicating that STING is required for normal ß-cell function. Islet transcriptome analysis showed that STING deficiency decreased expression of ß-cell function-related genes, including Glut2, Kcnj11, and Abcc8, contributing to impaired GSIS. Mechanistically, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and cleavage under targets and tagmentation (CUT&Tag) analyses suggested that Pax6 was the transcription factor that might be associated with defective GSIS in STING-ßKO mice. Indeed, Pax6 messenger RNA and protein levels were down-regulated and its nuclear localization was lost in STING-ßKO ß-cells. Together, these data revealed a function of STING in the regulation of insulin secretion and established pathophysiological significance of fine-tuned STING within ß-cells and insulin target tissues for maintaining glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Intolerância à Glucose/induzido quimicamente , Glucose/metabolismo , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Animais , Diabetes Mellitus Experimental , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Regulação da Expressão Gênica , Homeostase , Humanos , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout
3.
Scand J Gastroenterol ; 57(12): 1430-1434, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35840539

RESUMO

OBJECTIVE: There are a few articles to study the relationship between bile reflux gastritis (BRG) and H. pylori infection, and the results are debatable. This study set out to determine the relationship between BRG and Helicobacter pylori (H. pylori) infection. METHODS: In this retrospective study, patients from January, 1st 2013 to January, 1st, 2021 were divided into two groups based on whether they had BRG. The control group was got by 1:1 propensity-score matching (PSM) based on age and sex. Then, the relationship between BRG and H. pylori in patients was analyzed via Chi-squared test and Phi (φ) detection. RESULTS: 26449 patients were included in this study, and there were 1918 patients in each group after age and sex matching. patients with HP were responsible for 35% (9345/26449) and patients with BRG were 7% (1918/26449). Further relationship exploration, there is a negative, but weak, the relationship between BRG and HP infection (X2 = 45.62, p < .001, Phi (φ)= -0.109). CONCLUSION: Patients with bile reflux may have less likely to get HP infection. HP eradication is an important thing for the prevention of gastric cancer and this study serves as a foundation and may provide directions for future research.


Assuntos
Refluxo Biliar , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/complicações , Refluxo Biliar/complicações , Estudos Retrospectivos , Mucosa Gástrica
4.
Proc Natl Acad Sci U S A ; 116(24): 11776-11785, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31123148

RESUMO

The cytoplasmic coat protein complex-II (COPII) is evolutionarily conserved machinery that is essential for efficient trafficking of protein and lipid cargos. How the COPII machinery is regulated to meet the metabolic demand in response to alterations of the nutritional state remains largely unexplored, however. Here, we show that dynamic changes of COPII vesicle trafficking parallel the activation of transcription factor X-box binding protein 1 (XBP1s), a critical transcription factor in handling cellular endoplasmic reticulum (ER) stress in both live cells and mouse livers upon physiological fluctuations of nutrient availability. Using live-cell imaging approaches, we demonstrate that XBP1s is sufficient to promote COPII-dependent trafficking, mediating the nutrient stimulatory effects. Chromatin immunoprecipitation (ChIP) coupled with high-throughput DNA sequencing (ChIP-seq) and RNA-sequencing analyses reveal that nutritional signals induce dynamic XBP1s occupancy of promoters of COPII traffic-related genes, thereby driving the COPII-mediated trafficking process. Liver-specific disruption of the inositol-requiring enzyme 1α (IRE1α)-XBP1s signaling branch results in diminished COPII vesicle trafficking. Reactivation of XBP1s in mice lacking hepatic IRE1α restores COPII-mediated lipoprotein secretion and reverses the fatty liver and hypolipidemia phenotypes. Thus, our results demonstrate a previously unappreciated mechanism in the metabolic control of liver protein and lipid trafficking: The IRE1α-XBP1s axis functions as a nutrient-sensing regulatory nexus that integrates nutritional states and the COPII vesicle trafficking.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Endorribonucleases/metabolismo , Nutrientes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Movimento Celular/fisiologia , Imunoprecipitação da Cromatina/métodos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Lipídeos/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/fisiologia
5.
Cities ; 122: 103472, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34629612

RESUMO

The coronavirus disease (COVID-19) outbreak has immensely changed people's travel behaviour. The changes in travel behaviour have had a huge impact on different industries, such as consumption, entertainment, commerce, office, and education. This study investigates the impact of COVID-19 on population travel patterns from three aspects: total trips, travel recovery degree, and travel distance. The result indicates that COVID-19 has reduced the total number of cross-city trips and flexible non-work travel; in the post-pandemic era, cross-city travel is mainly short-distance (distance <100 km). This study has significant policymaking implications for governments in countries where the population shares a similar change in travel behaviour.

6.
Yi Chuan ; 44(10): 840-852, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384722

RESUMO

In recent years, the incidence rate of type 2 diabetes (T2D) has risen rapidly and has become a global health crisis. Recent experimental and clinical studies have shown that islet ß-cell dysfunction is an important cause of T2D and its related complications. ß-cells undergo dynamic compensation and decompensation in the course of T2D. In this process, metabolic stress responses, such as ER stress, oxidative stress and inflammation, are key regulators of ß-cell functional alternations. In this review, we summarize the research progress on the ß-cell functional dynamics in the course of T2D, in order to deepen the understanding of the molecular mechanism of T2D, and provide reference for its precise diagnosis and clinical intervention.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Inflamação , Estresse Oxidativo
7.
Yi Chuan ; 44(10): 958-966, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384731

RESUMO

Cleavage under target and tagment (CUT&Tag) is a technology that utilizes the fusion protein of Tn5 transposase and protein A/G which can guide Tn5 enzyme to the antibody bound to target protein and cleave the chromatin regions adjacent to target protein. Chromatin libraries are then tagged and sequenced by the high-throughput sequencing to obtain chromatin information at specific sites or protein binding locations. CUT&Tag technology plays an important role in the research of DNA and protein interactions. It can be used to understand the modifications of histone and the bindings of transcription factors. Compared with the traditional chromatin immunoprecipitation-sequencing (ChIP-seq) technology, the CUT&Tag has the strengths of high signal-to-noise ratio, good repeatability, short experimental period, and low cell input. It shows great advantages in early embryonic development, stem cells, cancer, epigenetics and other research fields. In this article, we described the protocol of CUT&Tag for metabolic tissue cells (mouse primary islet cells), to provide an epigenetic method for studying metabolic cells.


Assuntos
Cromatina , Histonas , Camundongos , Animais , Imunoprecipitação da Cromatina/métodos , Análise de Sequência de DNA/métodos , Histonas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala
8.
Liver Int ; 41(4): 777-787, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555112

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD), whose pathogenesis remains unelucidated, has become an increasingly prevalent disease globally requiring novel treatment strategies. This study aims to explore the role of leukocyte cell-derived chemotaxin 2 (LECT2), one of the known hepatokines, in the development of NAFLD. METHODS: The serum LECT2 level was evaluated in patients with NAFLD and male C57BL/6 mice fed a high-fat diet (HFD) for 8 weeks. Tail intravenous injection of adeno-associated virus that contained Lect2 short hairpin RNA or Lect2 overexpression plasmid was administered to mice to inhibit or increase hepatic Lect2 expression. Hepatic steatosis was evaluated by histological staining with haematoxylin and eosin and Oil Red O, and also by quantitative hepatic triglyceride measurements. RNA-seq was performed to discover the specific targets of LECT2 on NAFLD. RESULTS: Serum and hepatic LECT2 levels were elevated in NAFLD patients and HFD-fed mice. Inhibition of hepatic Lect2 expression alleviated HFD-induced hepatic steatosis and inflammation, whereas hepatic overexpression of Lect2 aggravated HFD-induced hepatic steatosis and inflammation. RNA-seq and bioinformatical analysis suggested that the signal transducers and activators of transcription-1 (STAT-1) pathway might play an indispensable role in the interaction between LECT2 and NAFLD. A STAT-1 inhibitor could reverse the accumulation of hepatic lipids caused by Lect2 overexpression. CONCLUSION: LECT2 expression is significantly elevated in NAFLD. LECT2 induces the occurrence and development of NAFLD through the STAT-1 pathway. LECT2 may be a potential therapeutic target for NAFLD.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Hepatopatia Gordurosa não Alcoólica , Animais , Fatores Quimiotáticos , Dieta Hiperlipídica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucócitos , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdutores
9.
J Mol Cell Cardiol ; 142: 53-64, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251671

RESUMO

Diabetes mellitus is a serious metabolic condition associated with a multitude of cardiovascular complications. Moreover, the prevalence of diabetes in heart failure populations is higher than that in control populations. However, the role of cardiomyocyte alterations in type 2 diabetes mellitus (T2DM) has not been well characterized and the underlying mechanisms remain elusive. In this study, two patients who were diagnosed as T2DM were recruited and patient-specific induced pluripotent stem cells (iPSCs) were generated from urine epithelial cells using nonintegrated Sendai virus. The iPSC lines derived from five healthy subjects were used as controls. All iPSCs were differentiated into cardiomyocytes (iPSC-CMs) using the monolayer-based differentiation protocol. T2DM iPSC-CMs exhibited various disease phenotypes, including cellular hypertrophy and lipid accumulation. Moreover, T2DM iPSC-CMs exhibited higher susceptibility to high-glucose/high-lipid challenge than control iPSC-CMs, manifesting an increase in apoptosis. RNA-Sequencing analysis revealed a differential transcriptome profile and abnormal activation of TGFß signaling pathway in T2DM iPSC-CMs. We went on to show that inhibition of TGFß significantly rescued the hypertrophic phenotype in T2DM iPSC-CMs. In conclusion, we demonstrate that the iPSC-CM model is able to recapitulate cellular phenotype of T2DM. Our results indicate that iPSC-CMs can therefore serve as a suitable model for investigating molecular mechanisms underlying diabetic cardiomyopathies and for screening therapeutic drugs.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Apoptose/genética , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Biomarcadores , Estudos de Casos e Controles , Diferenciação Celular/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/etiologia , Células Epiteliais/metabolismo , Glucose/metabolismo , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Metabolismo dos Lipídeos , Miócitos Cardíacos/citologia , Transcriptoma
10.
J Biol Chem ; 294(27): 10438-10448, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118273

RESUMO

The initiation and development of diabetes are mainly ascribed to the loss of functional ß-cells. Therapies designed to regenerate ß-cells provide great potential for controlling glucose levels and thereby preventing the devastating complications associated with diabetes. This requires detailed knowledge of the molecular events and underlying mechanisms in this disorder. Here, we report that expression of microRNA-223 (miR-223) is up-regulated in islets from diabetic mice and humans, as well as in murine Min6 ß-cells exposed to tumor necrosis factor α (TNFα) or high glucose. Interestingly, miR-223 knockout (KO) mice exhibit impaired glucose tolerance and insulin resistance. Further analysis reveals that miR-223 deficiency dramatically suppresses ß-cell proliferation and insulin secretion. Mechanistically, using luciferase reporter gene assays, histological analysis, and immunoblotting, we demonstrate that miR-223 inhibits both forkhead box O1 (FOXO1) and SRY-box 6 (SOX6) signaling, a unique bipartite mechanism that modulates expression of several ß-cell markers (pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), and urocortin 3 (UCN3)) and cell cycle-related genes (cyclin D1, cyclin E1, and cyclin-dependent kinase inhibitor P27 (P27)). Importantly, miR-223 overexpression in ß-cells could promote ß-cell proliferation and improve ß-cell function. Taken together, our results suggest that miR-223 is a critical factor for maintaining functional ß-cell mass and adaptation during metabolic stress.


Assuntos
Proteína Forkhead Box O1/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição SOXD/metabolismo , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Proliferação de Células , Ciclina D1/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Proteína Forkhead Box O1/química , Proteína Forkhead Box O1/genética , Teste de Tolerância a Glucose , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Ratos , Fatores de Transcrição SOXD/química , Fatores de Transcrição SOXD/genética , Transdução de Sinais , Transativadores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
11.
J Cell Mol Med ; 22(12): 5877-5887, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30247800

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a dynamic transitional state from the epithelial to mesenchymal phenotypes. Numerous studies have suggested that EMT and its intermediate states play important roles in tumor invasion and metastasis. To identify novel regulatory molecules of EMT, we screened a siRNA library targeting human 720 kinases in A549 lung adenocarcinoma cells harboring E-cadherin promoter-luciferase reporter vectors. NIMA-related kinase-4 (NEK4) was identified and characterized as a positive regulator of EMT in the screening. Suppression of NEK4 resulted in the inhibition of cell migration and invasion, accompanying with an increased expression of cell adhesion-related proteins such as E-cadherin and ZO1. Furthermore, NEK4 knockdown caused the decreased expression of the transcriptional factor Zeb1 and Smads proteins, which are known to play key roles in EMT regulation. Consistently, overexpression of NEK4 resulted in the decreased expression of E-cadherin and increased expression of Smad3. Using a mouse model with tail vein injection of NEK4 knockdown stable cell line, we found a lower rate of tumor formation and metastasis of the NEK4-knockdown cells in vivo. Thus, this study demonstrates NEK4 as a novel kinase involved in regulation of EMT and suggests that NEK4 may be further explored as a potential therapeutic target for lung cancer metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Quinases Relacionadas a NIMA/metabolismo , Células A549 , Animais , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Movimento Celular , Humanos , Células MCF-7 , Camundongos Nus , Metástase Neoplásica , Transdução de Sinais , Fatores de Transcrição/metabolismo
12.
Fa Yi Xue Za Zhi ; 32(2): 114-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27501683

RESUMO

OBJECTIVE: To determine the normal reference values of 33 elements, Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, Li, Mg, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Th, Ti, Tl, U, V, Zn and Zr, in the blood and urine samples from the general population in Sanmen County of Zhejiang province, a typical coastal area of eastern China. METHODS: The 33 elements in 272 blood and 300 urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The normality test of data was conducted using SPSS 17.0 Statistics. The data was compared with other reports. RESULTS: The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County were obtained, which of some elements were found to be similar with other reports, such as Co, Cu, Mn and Sr, while As, Cd, Hg and Pb were generally found to be higher than those previously reported. There was a wide variation between the reports from different countries in blood Ba. CONCLUSION: The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County are established, and successfully applied to two poisoning cases.


Assuntos
Análise Química do Sangue , Elementos Químicos , Monitoramento Ambiental , Urinálise , China , Humanos
13.
Fa Yi Xue Za Zhi ; 31(2): 112-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26245088

RESUMO

OBJECTIVE: To determine the chlorpyrifos in human blood by liquid chromatography-tandem mass spectrometry and to validate its application in poisoning cases. METHODS: The samples were extracted by a simple one-step protein precipitation procedure. Chromatography was performed on a Capcell Pack C18 MGII column (250 mm x 2.0 mm, 5 µm) using an isocratic elution of solvent A (0.1% formic acid-water with 2 mmol/L ammonium acetate) and solvent B (methanol with 2 mmol/L ammonium acetate) at 5:95 V:V). RESULTS: The linear ranged from 5 to 500 ng/mL (r = 0.998 7). The limit of detection (LOD) and the lower limit of quantification (LLOQ) were 2 ng/mL and 4 ng/mL, respectively. For this method, the precision and accuracy of intra-day and inter-day were < 10% and 97.44%-101.10%, respectively. The results in stability test of long-term frozen were satisfied. The matrix effect, recovery and process efficiency were 64.97%-86.81%, 76.70%-85.52%, and 55.57%-66.58%, respectively. CONCLUSION: This method can provide a rapid approach to chlorpyrifos extraction and determination in toxicological analysis of forensic and clinical treatment.


Assuntos
Clorpirifos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Intoxicação , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
14.
Fa Yi Xue Za Zhi ; 31(2): 117-22, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26245089

RESUMO

OBJECTIVE: To determine the normal range of the 33 elements (Li, Be, B, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Cs, Ba Au, Hg, Tl, Pb, Th and U) in human whole blood of general population in Hunan province. METHODS: Blood samples were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to determine the normal range. The influences of district, gender and age to the element content in blood samples were also observed. RESULTS: The normal range of 33 elements in blood samples from general population in Hunan province were obtained. Gender was shown to statistically influence the concentrations of B, Mg, Ca, Ti, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Cs, Hg and Pb (P < 0.05), while age was shown to influence the concentrations of Co, Ni, Cs and Hg in women (P < 0.05) as well as Cu, Se and Hg in men (P < 0.05). CONCLUSION: Although there are variables in different districts, the normal ranges of trace element in blood of the four cities in Hunan province are established.


Assuntos
Povo Asiático/etnologia , Espectrometria de Massas/métodos , Oligoelementos/sangue , Fatores Etários , China , Feminino , Humanos , Masculino , Padrões de Referência , Valores de Referência , Características de Residência , Fatores Sexuais
15.
Radiology ; 271(1): 248-54, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24475855

RESUMO

PURPOSE: To investigate the use of photoacoustic (PA) spectrum analysis (PASA) to identify microstructural changes corresponding to fat accumulation in mouse livers ex vivo and in situ. MATERIALS AND METHODS: The laboratory animal protocol for this work was approved by the university committee on use and care of animals. Six mice with normal livers and six mice with fatty livers were examined ex vivo with a PA system at 1200 nm, and nine similar pairs of mice were examined at 532 nm. To explore the feasibility of this technique for future study in an in vivo mouse model, an additional pair of normal and fatty mouse livers was scanned in situ with an ultrasonographic (US) and PA dual-modality imaging system. The PA signals acquired were analyzed by using the proposed PASA method. Results of the groups were compared by using the Student t test. RESULTS: Prominent differences between the PASA parameters from the fatty and normal mouse livers were observed. The analysis of the PASA parameters from six normal and six fatty mouse livers indicates that there are differences of up to 5 standard deviations between the PASA parameters of the normal livers and those of the fatty livers at 1200 nm; for parameters from nine normal and nine fatty mouse livers at 532 nm, the differences were approximately 2 standard deviations (P < .05) for each PASA parameter. CONCLUSION: The results supported our hypothesis that the PASA allows quantitative identification of the microstructural changes that differentiate normal from fatty livers. Compared with that at 532 nm, PASA at 1200 nm is more reliable for fatty liver diagnosis. Online supplemental material is available for this article.


Assuntos
Fígado Gorduroso/diagnóstico , Técnicas Fotoacústicas , Animais , Processamento de Imagem Assistida por Computador , Lasers , Camundongos , Camundongos Endogâmicos C57BL
16.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693121

RESUMO

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Assuntos
Dieta Hiperlipídica , Galectina 3 , Secreção de Insulina , Células Secretoras de Insulina , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Fa Yi Xue Za Zhi ; 29(2): 110-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23930504

RESUMO

To develop a simple, validated method for identifying and quantifying 1,3-butadiene (BD) in human blood by gas chromatography-mass spectrometry (GC-MS) and head-space gas chromatography (HS-GC). BD was identified by GC-MS and HS-GC, and quantified by HS-GC. The method showed that BD had a good linearity from 50 to 500 microg/mL (r > 0.99). The limits of detection and quantification were 10 microg/mL and 50 microg/mL, respectively. Both the intra-day precision and inter-day precision were < 6.08%, and the accuracy was 96.98%-103.81%. The method was applied to an actual case, and the concentration of BD in the case was 242 microg/mL in human blood. This simple method is found to be useful for the routine forensic analysis of acute exposure to BD.


Assuntos
Butadienos/sangue , Butadienos/intoxicação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Intoxicação por Gás , Adulto , Toxicologia Forense/métodos , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solventes/química , Temperatura
18.
Fa Yi Xue Za Zhi ; 29(6): 425-30, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24665612

RESUMO

OBJECTIVE: To establish the electricity plate digestion and inductively coupled plasma-mass spectrometry (ICP-MS) method for determination of 33 inorganic elements in human hair. METHODS: Lithium (6Li), Germanium (72Ge), Yttrium (89Y), Indium (115In), and Terbium (159Tb) were used as internal standards. The electric heating board digestion in a mixture of nitric acid and hydrogen peroxide was used as the pre-treatment of the hair. Thirty-three inorganic elements in human hair were analyzed by ICP-MS method. RESULTS: The detection limit of ICP-MS was 0.0001 microg/g(Th)-10.9 microg/g (Ca) and the limit of quantitation was 0.0005 microg/g (Th)-25 microg/g (Ca). The recovery rate of this method was 86%-113%. The RSD for the intra-day and inter-day were less than 9.2%. The method was not statistically different from microwave digestion method. CONCLUSION: This method is highly efficient and accurate. It can be used for analysis of 33 inorganic elements in human hair.


Assuntos
Cabelo/química , Espectrometria de Massas/métodos , Micro-Ondas , Oligoelementos/análise , Eletricidade , Humanos , Limite de Detecção , Padrões de Referência , Sensibilidade e Especificidade
19.
J Mol Cell Biol ; 15(3)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36882217

RESUMO

Exercise intervention at the early stage of type 2 diabetes mellitus (T2DM) can aid in the maintenance of blood glucose homeostasis and prevent the development of macrovascular and microvascular complications. However, the exercise-regulated pathways that prevent the development of T2DM remain largely unclear. In this study, two forms of exercise intervention, treadmill training and voluntary wheel running, were conducted for high-fat diet (HFD)-induced obese mice. We observed that both forms of exercise intervention alleviated HFD-induced insulin resistance and glucose intolerance. Skeletal muscle is recognized as the primary site for postprandial glucose uptake and for responsive alteration beyond exercise training. Metabolomic profiling of the plasma and skeletal muscle in Chow, HFD, and HFD-exercise groups revealed robust alterations in metabolic pathways by exercise intervention in both cases. Overlapping analysis identified nine metabolites, including beta-alanine, leucine, valine, and tryptophan, which were reversed by exercise treatment in both the plasma and skeletal muscle. Transcriptomic analysis of gene expression profiles in the skeletal muscle revealed several key pathways involved in the beneficial effects of exercise on metabolic homeostasis. In addition, integrative transcriptomic and metabolomic analyses uncovered strong correlations between the concentrations of bioactive metabolites and the expression levels of genes involved in energy metabolism, insulin sensitivity, and immune response in the skeletal muscle. This work established two models of exercise intervention in obese mice and provided mechanistic insights into the beneficial effects of exercise intervention on systemic energy homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Humanos , Transcriptoma , Camundongos Obesos , Diabetes Mellitus Tipo 2/metabolismo , Atividade Motora , Dieta Hiperlipídica/efeitos adversos , Metaboloma , Músculo Esquelético/metabolismo , Terapia por Exercício , Camundongos Endogâmicos C57BL
20.
Diabetes ; 72(11): 1574-1596, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579296

RESUMO

Thermogenic adipocytes have been extensively investigated because of their energy-dissipating property and therapeutic potential for obesity and diabetes. Besides serving as fuel sources, accumulating evidence suggests that intermediate metabolites play critical roles in multiple biological processes. However, their role in adipocyte differentiation and thermogenesis remains unexplored. Here, we report that human and mouse obesity is associated with marked downregulation of glutamine synthetase (Glul) expression and activity in thermogenic adipose tissues. Glul is robustly upregulated during brown adipocyte (BAC) differentiation and in brown adipose tissue (BAT) upon cold exposure and Cl316,243 stimulation. Further genetic, pharmacologic, or metabolic manipulations of Glul and glutamine levels reveal that glutamine cells autonomously stimulate BAC differentiation and function and BAT remodeling and improve systemic energy homeostasis in mice. Mechanistically, glutamine promotes transcriptional induction of adipogenic and thermogenic gene programs through histone modification-mediated chromatin remodeling. Among all the glutamine-regulated writer and eraser genes responsible for histone methylation and acetylation, only Prdm9, a histone lysine methyltransferase, is robustly induced during BAC differentiation. Importantly, Prdm9 inactivation by shRNA knockdown or a selective inhibitor attenuates glutamine-triggered adipogenic and thermogenic induction. Furthermore, Prdm9 gene transcription is regulated by glutamine through the recruitment of C/EBPb to its enhancer region. This work reveals glutamine as a novel activator of thermogenic adipocyte differentiation and uncovers an unexpected role of C/EBPb-Prdm9-mediated H3K4me3 and transcriptional reprogramming in adipocyte differentiation and thermogenesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa