Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Infect Dis ; 24(1): 537, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807052

RESUMO

BACKGROUND: As SARS-CoV-2 continues to be relevant and cause illnesses, the effect of emerging virus variants on perinatal health remains to be elucidated. It was demonstrated that vertical transmission of SARS-CoV-2 is a relatively rare event in the original SARS-CoV-2 strain. However, very few reports describe vertical transmission related to the delta-variant. CASE PRESENTATION: We report a case of a preterm male neonate born to a mother with positive SARS-CoV-2 and mild respiratory complications. The neonate was born by cesarean section due to fetal distress. The rupture of the amniotic membrane was at delivery. The neonate had expected prematurity-related complications. His nasopharyngeal swabs for RT-PCR were positive from birth till three weeks of age. RT-ddPCR of the Placenta showed a high load of the SARS-CoV-2 virus with subgenomic viral RNA. RNAscope technique demonstrated both the positive strand of the S gene and the orf1ab negative strand. Detection of subgenomic RNA and the orf1ab negative strand indicats active viral replication in the placenta. CONCLUSIONS: Our report demonstrates active viral replication of the SARS-CoV-2 delta-variant in the placenta associated with vertical transmission in a preterm infant.


Assuntos
COVID-19 , Recém-Nascido Prematuro , Transmissão Vertical de Doenças Infecciosas , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Humanos , COVID-19/transmissão , COVID-19/virologia , Recém-Nascido , SARS-CoV-2/genética , Feminino , Gravidez , Masculino , Complicações Infecciosas na Gravidez/virologia , Placenta/virologia , Adulto , RNA Viral/genética , Cesárea
2.
J Neurosci ; 36(11): 3363-77, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26985043

RESUMO

Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models of brain injury. Here, we hypothesized that IVH damages white matter via AMPA receptor activation, and that AMPA-kainate receptor inhibition suppresses inflammation and restores OPC maturation, myelination, and neurologic recovery in preterm newborns with IVH. We tested these hypotheses in a rabbit model of glycerol-induced IVH and evaluated the expression of AMPA receptors in autopsy samples from human preterm infants. GluR1-GluR4 expressions were comparable between preterm humans and rabbits with and without IVH. However, GluR1 and GluR2 levels were significantly lower in the embryonic white matter and germinal matrix relative to the neocortex in both infants with and without IVH. Pharmacological blockade of AMPA-kainate receptors with systemic NBQX, or selective AMPA receptor inhibition by intramuscular perampanel restored myelination and neurologic recovery in rabbits with IVH. NBQX administration also reduced the population of apoptotic OPCs, levels of several cytokines (TNFα, IL-ß, IL-6, LIF), and the density of Iba1(+) microglia in pups with IVH. Additionally, NBQX treatment inhibited STAT-3 phosphorylation, but not astrogliosis or transcription factors regulating gliosis. Our data suggest that AMPA-kainate receptor inhibition alleviates OPC loss and IVH-induced inflammation and restores myelination and neurologic recovery in preterm rabbits with IVH. Therapeutic use of FDA-approved perampanel treatment might enhance neurologic outcome in premature infants with IVH. SIGNIFICANCE STATEMENT: Intraventricular hemorrhage (IVH) is a major complication of prematurity and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The development of IVH leads to inflammation of the periventricular white matter, apoptosis and arrested maturation of oligodendrocyte precursor cells, and hypomyelination. Here, we show that AMPA-kainate receptor inhibition by NBQX suppresses inflammation, attenuates apoptosis of oligodendrocyte precursor cells, and promotes myelination as well as clinical recovery in preterm rabbits with IVH. Importantly, AMPA-specific inhibition by the FDA-approved perampanel, which unlike NBQX has a low side-effect profile, also enhances myelination and neurological recovery in rabbits with IVH. Hence, the present study highlights the role of AMPA-kainate receptor in IVH-induced white matter injury and identifies a novel strategy of neuroprotection, which might improve the neurological outcome for premature infants with IVH.


Assuntos
Encéfalo/metabolismo , Hemorragia/complicações , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Receptores de AMPA/metabolismo , Recuperação de Função Fisiológica/fisiologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/ultraestrutura , Sinalização do Cálcio/efeitos dos fármacos , Ventrículos Cerebrais/fisiopatologia , Ventrículos Cerebrais/ultraestrutura , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Glicerol/toxicidade , Hemorragia/induzido quimicamente , Hemorragia/patologia , Humanos , Leucoencefalopatias/tratamento farmacológico , Leucoencefalopatias/etiologia , Masculino , Doenças do Sistema Nervoso/tratamento farmacológico , Nitrilas , Gravidez , Piridonas/farmacologia , Piridonas/uso terapêutico , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Coelhos , Receptores de AMPA/genética , Recuperação de Função Fisiológica/efeitos dos fármacos
3.
J Neurosci ; 36(3): 872-89, 2016 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791217

RESUMO

Intraventricular hemorrhage (IVH) in premature infants results in inflammation, arrested oligodendrocyte progenitor cell (OPC) maturation, and reduced myelination of the white matter. Hyaluronan (HA) inhibits OPC maturation and complexes with the heavy chain (HC) of glycoprotein inter-α-inhibitor to form pathological HA (HC-HA complex), which exacerbates inflammation. Therefore, we hypothesized that IVH would result in accumulation of HA, and that either degradation of HA by hyaluronidase treatment or elimination of HCs from pathological HA by HA oligosaccharide administration would restore OPC maturation, myelination, and neurological function in survivors with IVH. To test these hypotheses, we used the preterm rabbit model of glycerol-induced IVH and analyzed autopsy samples from premature infants. We found that total HA levels were comparable in both preterm rabbit pups and human infants with and without IVH, but HA receptors--CD44, TLR2, TLR4--were elevated in the forebrain of both humans and rabbits with IVH. Hyaluronidase treatment of rabbits with IVH reduced CD44 and TLR4 expression, proinflammatory cytokine levels, and microglia infiltration. It also promoted OPC maturation, myelination, and neurological recovery. HC-HA and tumor necrosis factor-stimulated gene-6 were elevated in newborns with IVH; and depletion of HC-HA levels by HA oligosaccharide treatment reduced inflammation and enhanced myelination and neurological recovery in rabbits with IVH. Hence, hyaluronidase or HA oligosaccharide treatment represses inflammation, promotes OPC maturation, and restores myelination and neurological function in rabbits with IVH. These therapeutic strategies might improve the neurological outcome of premature infants with IVH. Significance statement: Approximately 12,000 premature infants develop IVH every year in the United States, and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The onset of IVH induces inflammation of the periventricular white matter, which results in arrested maturation of OPCs and myelination failure. HA is a major component of the extracellular matrix of the brain, which regulates inflammation through CD44 and TLR2/4 receptors. Here, we show two mechanism-based strategies that effectively enhanced myelination and neurological recovery in preterm rabbit model of IVH. First, degrading HA by hyaluronidase treatment reduced CD44 and TLR4 expression, proinflammatory cytokines, and microglial infiltration, as well as promoted oligodendrocyte maturation and myelination. Second, intraventricular injection of HA oligosaccharide reduced inflammation and enhanced myelination, conceivably by depleting HC-HA levels.


Assuntos
Hemorragia Cerebral/metabolismo , Ventrículos Cerebrais/metabolismo , Ácido Hialurônico/biossíntese , Hialuronoglucosaminidase/biossíntese , Oligossacarídeos/biossíntese , Recuperação de Função Fisiológica/fisiologia , Animais , Animais Recém-Nascidos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/patologia , Feminino , Humanos , Ácido Hialurônico/administração & dosagem , Recém-Nascido , Injeções Intraventriculares , Masculino , Oligossacarídeos/administração & dosagem , Gravidez , Coelhos , Recuperação de Função Fisiológica/efeitos dos fármacos
4.
J Neurosci ; 33(2): 411-23, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303921

RESUMO

Premature infants exhibit neurodevelopmental delay and reduced growth of the cerebral cortex. However, the underlying mechanisms have remained elusive. Therefore, we hypothesized that neurogenesis in the ventricular and subventricular zones of the cerebral cortex would continue in the third trimester of pregnancy and that preterm birth would suppress neurogenesis. To test our hypotheses, we evaluated autopsy materials from human fetuses and preterm infants of 16-35 gestational weeks (gw). We noted that both cycling and noncycling Sox2(+) radial glial cells and Tbr2(+) intermediate progenitors were abundant in human preterm infants until 28 gw. However, their densities consistently decreased from 16 through 28 gw. To determine the effect of premature birth on neurogenesis, we used a rabbit model and compared preterm [embryonic day 29 (E29), 3 d old] and term (E32, <2 h old) pups at an equivalent postconceptional age. Glutamatergic neurogenesis was suppressed in preterm rabbits, as indicated by the reduced number of Tbr2(+) intermediate progenitors and the increased number of Sox2(+) radial glia. Additionally, hypoxia-inducible factor-1α, vascular endothelial growth factor, and erythropoietin were higher in term than preterm pups, reflecting the hypoxic intrauterine environment of just-born term pups. Proneural genes, including Pax6 and Neurogenin-1 and -2, were higher in preterm rabbit pups compared with term pups. Importantly, neurogenesis and associated factors were restored in preterm pups by treatment with dimethyloxallyl glycine, a hypoxia mimetic agent. Hence, glutamatergic neurogenesis continues in the premature infants, preterm birth suppresses neurogenesis, and hypoxia-mimetic agents might restore neurogenesis, enhance cortical growth, and improve neurodevelopmental outcome of premature infants.


Assuntos
Neurogênese/fisiologia , Terceiro Trimestre da Gravidez/fisiologia , Nascimento Prematuro/fisiopatologia , Adulto , Animais , Contagem de Células , Ventrículos Cerebrais/crescimento & desenvolvimento , Eritropoetina/fisiologia , Feminino , Idade Gestacional , Glicina/farmacologia , Humanos , Hipóxia/fisiopatologia , Fator 1 Induzível por Hipóxia/biossíntese , Fator 1 Induzível por Hipóxia/fisiologia , Imuno-Histoquímica , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/fisiologia , Gravidez , Coelhos , Transdução de Sinais/fisiologia , Telencéfalo/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia
5.
J Neurosci ; 33(44): 17232-46, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174657

RESUMO

Intraventricular hemorrhage (IVH) remains a major cause of white matter injury in preterm infants with no viable therapeutic strategy to restore myelination. Maturation of oligodendrocytes and myelination is influenced by thyroid hormone (TH) signaling, which is mediated by TH receptor α (TRα) and TRß. In the brain, cellular levels of TH are regulated by deiodinases, with deiodinase-2 mediating TH activation and deiodinase-3 TH inactivation. Therefore, we hypothesized that IVH would decrease TH signaling via changes in the expression of deiodinases and/or TRs, and normalization of TH signaling would enhance maturation of oligodendrocytes and myelination in preterm infants with IVH. These hypotheses were tested using both autopsy materials from human preterm infants and a rabbit model of IVH. We found that deiodinase-2 levels were reduced, whereas deiodinase-3 levels were increased in brain samples of both humans and rabbits with IVH compared with controls without IVH. TRα expression was also increased in human infants with IVH. Importantly, treatment with TH accelerated the proliferation and maturation of oligodendrocytes, increased transcription of Olig2 and Sox10 genes, augmented myelination, and restored neurological function in pups with IVH. Consistent with these findings, the density of myelinating oligodendrocytes was almost doubled in TH-treated human preterm infants compared with controls. Thus, in infants with IVH the combined elevation in deiodinase-3 and reduction in deiodinase-2 decreases TH signaling that can be worsened by an increase in unliganded TRα. Given that TH promotes neurological recovery in IVH, TH treatment might improve the neurodevelopmental outcome of preterm infants with IVH.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/fisiopatologia , Ventrículos Cerebrais/fisiopatologia , Bainha de Mielina/fisiologia , Recuperação de Função Fisiológica/fisiologia , Tiroxina/fisiologia , Animais , Animais Recém-Nascidos , Ventrículos Cerebrais/fisiologia , Modelos Animais de Doenças , Método Duplo-Cego , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Bainha de Mielina/patologia , Coelhos , Tiroxina/uso terapêutico , Resultado do Tratamento
6.
J Neurosci Res ; 90(11): 2173-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22806625

RESUMO

Mechanisms of brain injury in intraventricular hemorrhage (IVH) of premature infants are elusive, and no therapeutic strategy exists to prevent brain damage in these infants. Therefore, we developed an in vitro organotypic forebrain slice culture model to advance mechanistic studies and therapeutic developments for this disorder. We cultured forebrain slices from E29 rabbit pups and treated the cultured slices (CS) with moderate (50 µl) or large (100 µl) amounts of autologous blood to mimic moderate and severe IVH. Blood-induced damage to CS was evaluated by propidium iodide staining, lactate dehydrogenase (LDH) levels, microglial density, neuronal degeneration, myelination, and gliosis over 2 weeks after the initiation of culture. CS were viable for at least 14 days in vitro (DIV). The application of blood induced significant neural cell degeneration. Degenerating cells were more abundant and LDH levels were elevated in a dose-dependent manner in CS treated with 50 versus 100 µl of blood compared with untreated controls. Microglial density was higher in blood-treated CS compared with controls at both 7 and 14 days posttreatment, and myelination was reduced and gliosis enhanced. Selective application of blood fractions revealed that CS treated with plasma displayed more hypomyelination and gliosis compared with erythrocyte-treated slices. This study develops and characterizes a novel rabbit forebrain slice culture model of IVH that exhibits neuropatholgical changes similar to those in human infants with IVH. Importantly, plasma appears to induce greater white matter damage than erythrocytes in IVH,indicating plasma as a source of neurotoxic components.


Assuntos
Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Doenças do Prematuro/patologia , Técnicas de Cultura de Órgãos/métodos , Prosencéfalo/patologia , Animais , Hemorragia Cerebral/etiologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Degeneração Neural/etiologia , Degeneração Neural/patologia , Coelhos
7.
Brain ; 133(Pt 8): 2264-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20488889

RESUMO

Intraventricular haemorrhage is a major complication of prematurity that results in neurological dysfunctions, including cerebral palsy and cognitive deficits. No therapeutic options are currently available to limit the catastrophic brain damage initiated by the development of intraventricular haemorrhage. As intraventricular haemorrhage leads to an inflammatory response, we asked whether cyclooxygenase-2, its derivative prostaglandin E2, prostanoid receptors and pro-inflammatory cytokines were elevated in intraventricular haemorrhage; whether their suppression would confer neuroprotection; and determined how cyclooxygenase-2 and cytokines were mechanistically-linked. To this end, we used our rabbit model of intraventricular haemorrhage where premature pups, delivered by Caesarian section, were treated with intraperitoneal glycerol at 2 h of age to induce haemorrhage. Intraventricular haemorrhage was diagnosed by head ultrasound at 6 h of age. The pups with intraventricular haemorrhage were treated with inhibitors of cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α; and cell-infiltration, cell-death and gliosis were compared between treated-pups and vehicle-treated controls during the first 3 days of life. Neurobehavioural performance, myelination and gliosis were assessed in pups treated with cyclooxygenase-2 inhibitor compared to controls at Day 14. We found that both protein and messenger RNA expression of cyclooxygenase-2, prostaglandin E2, prostanoid receptor-1, tumour necrosis factor-α and interleukin-1ß were consistently higher in the forebrain of pups with intraventricular haemorrhage relative to pups without intraventricular haemorrhage. However, cyclooxygenase-1 and prostanoid receptor 2-4 levels were comparable in pups with and without intraventricular haemorrhage. Cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α inhibition reduced inflammatory cell infiltration, apoptosis, neuronal degeneration and gliosis around the ventricles of pups with intraventricular haemorrhage. Importantly, cyclooxygenase-2 inhibition alleviated neurological impairment, improved myelination and reduced gliosis at 2 weeks of age. Cyclooxygenase-2 or prostanoid receptor-1 inhibition reduced tumour necrosis factor-α level, but not interleukin-1ß. Conversely, tumour necrosis factor-α antagonism did not affect cyclooxygenase-2 expression. Hence, prostanoid receptor-1 and tumour necrosis factor-α are downstream to cyclooxygenase-2 in the inflammatory cascade induced by intraventricular haemorrhage, and cyclooxygenase-2-inhibition or suppression of downstream molecules--prostanoid receptor-1 or tumour necrosis factor-α--might be a viable neuroprotective strategy for minimizing brain damage in premature infants with intraventricular haemorrhage.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Hemorragias Intracranianas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Receptores de Prostaglandina E/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Ventrículos Cerebrais , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Gliose/tratamento farmacológico , Gliose/metabolismo , Gliose/patologia , Interleucina-1beta/metabolismo , Hemorragias Intracranianas/metabolismo , Hemorragias Intracranianas/patologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Coelhos , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E Subtipo EP1 , Fator de Necrose Tumoral alfa/metabolismo
8.
Am J Perinatol ; 28(4): 305-14, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21117013

RESUMO

Newer bedside pulmonary mechanics using conventional ventilators allow for CONTINUOUS serial determinations of tidal volume (V(T)). We sought to determine whether the degree of pulmonary hypoplasia could be measured using bedside pulmonary graphics and whether survival could be predicted in potential extracorporeal membrane oxygenation (ECMO) candidates. Data on all neonates considered for or treated with ECMO at our center between April 2000 and March 2005 were collected. The "maximal bedside V(T)" was measured daily at the peak pressure where "beaking" began with a peak end expiratory pressure of 4 cm H(2)O. Twenty-two patients were reviewed: eight ECMO plus fourteen similar patients in whom the threshold for ECMO intervention was not achieved. Independent of need for ECMO, any patient with V(T) of < 3 mL/kg or < 0.2 mL/cm length died ( N = 4). All other measures of lung capacity or blood gas assessments were less valuable than V(T) in predicting survival. We conclude that bedside V(T) can be easily measured and that values < 3 mL/kg or < 0.2 mL/cm length demarcate severe lung hypoplasia, which in our patient population was incompatible with survival. We speculate that bedside V(T) may assist in evaluating the utility of ECMO.


Assuntos
Hérnias Diafragmáticas Congênitas , Pulmão/anormalidades , Pulmão/patologia , Insuficiência Respiratória/mortalidade , Doença Aguda , Gasometria , Oxigenação por Membrana Extracorpórea , Feminino , Hérnia Diafragmática/complicações , Hérnia Diafragmática/mortalidade , Humanos , Recém-Nascido , Pulmão/fisiopatologia , Masculino , Tamanho do Órgão , Síndrome da Persistência do Padrão de Circulação Fetal/complicações , Síndrome da Persistência do Padrão de Circulação Fetal/mortalidade , Valor Preditivo dos Testes , Alvéolos Pulmonares/anormalidades , Insuficiência Respiratória/sangue , Insuficiência Respiratória/complicações , Insuficiência Respiratória/fisiopatologia , Análise de Sobrevida , Volume de Ventilação Pulmonar
9.
J Neurosci Res ; 88(6): 1193-204, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19960540

RESUMO

Germinal matrix (GM) vasculature is selectively vulnerable to hemorrhage in premature infants during the first 48 hr of life. This is attributed to rapid angiogenesis of this brain region, resulting in formation of nascent vessels that show a paucity of pericytes and immaturity of extracellular matrix. Integrins are key regulators of angiogenesis and contribute to stabilization of cerebral vasculature by providing endothelial- and astrocyte-matrix adhesion. Therefore, we asked whether GM exhibited a distinct regional pattern of integrin expression that was dissimilar from that of the cerebral cortex and white matter in human fetuses and premature infants. To this end, we measured protein and gene expression of integrins in the GM, cortex, and white matter of human fetuses (15-22 weeks), premature infants (23-35 weeks), and mature infants (36-40 weeks). We found that protein levels of alpha5beta1 integrin were greater in the GM than in the cortex or white matter by 1.6-fold for both fetuses and premature infants. alpha5beta1 integrin mRNA expression was higher in the GM than in the cortex or white matter by 2-fold for fetuses but not for premature infants. alphaVbeta3, alphaVbeta5, alphaVbeta8, and alpha4beta1 integrin expression were comparable among GM, cortex, and white matter in fetuses and premature infants. Because alpha5beta1 integrin is a central regulator of angiogenesis, its elevation in the GM of fetuses and premature infants indicates that this might be a key activator of endothelial proliferation in this brain region. We speculate that selective alpha5beta1 integrin inhibition might suppress angiogenesis in the GM and thus prevent brain hemorrhage in premature infants.


Assuntos
Vasos Sanguíneos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Integrinas/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Vasos Sanguíneos/embriologia , Encéfalo/embriologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/embriologia , Feminino , Feto , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Integrina alfa4/metabolismo , Integrina alfa5/metabolismo , Integrina alfa5beta1/metabolismo , Masculino , RNA Mensageiro/metabolismo
10.
Stroke ; 40(6): 2191-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19372442

RESUMO

BACKGROUND AND PURPOSE: Germinal matrix hemorrhage-intraventricular hemorrhage is the most common neurological problem of premature infants. Despite this, mechanisms of brain injury from intraventricular hemorrhage are elusive. We hypothesized that germinal matrix hemorrhage-intraventricular hemorrhage, by induction of NAD(P)H oxidases, might cause oxidative/nitrosative stress contributing to brain injuries and that NAD(P)H oxidase inhibition could offer neuroprotection. METHODS: To test this hypothesis, we exploited our rabbit pup model of glycerol-induced germinal matrix hemorrhage-intraventricular hemorrhage. We delivered rabbit pups prematurely (E29) by cesarean section and administered intraperitoneal glycerol at 2 hours postnatal age. Free-radical adducts, including nitrotyrosine, 4-hyroxynonenal, and 8-hydroxy-deoxyguanosine as well as O(2)(.-) and H(2)O(2) levels were measured in the forebrain. To determine the source of free-radical generation, we used inhibitors for NAD(P)H oxidase (apocynin), xanthine oxidase (allopurinol), cyclo-oxygenase-2 (indomethacin), or nitric oxide synthases (L-NAME). Intraventricular hemorrhage pups were treated with apocynin and cell death was compared between apocynin-treated and vehicle-treated pups. RESULTS: Nitrotyrosine, 4-hyroxynonenal, and 8-hydroxy-deoxyguanosine levels were higher in pups with intraventricular hemorrhage than controls. Likewise, O(2)(.-) and H(2)O(2) levels were significantly greater in both the periventricular area and cerebral cortex of pups with intraventricular hemorrhage than controls. In pups with intraventricular hemorrhage, reactive oxygen species production was more in the periventricular area than in the cortex. Apocynin, but not allopurinol, indomethacin, or nitric oxide synthases, inhibited reactive oxygen species generation. Importantly, apocynin reduced cell death in pups with intraventricular hemorrhage. CONCLUSIONS: Activation of NAD(P)H oxidase was the predominant mechanism of free-radical generation in pups with intraventricular hemorrhage. NAD(P)H oxidase inhibition by apocynin might suppress reactive oxygen species production and confer neuroprotection in premature infants with intraventricular hemorrhage.


Assuntos
Hemorragia Cerebral/metabolismo , Inibidores Enzimáticos/farmacologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Fármacos Neuroprotetores , Estresse Oxidativo/fisiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetofenonas/farmacologia , Acridinas , Animais , Western Blotting , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/enzimologia , Ventrículos Cerebrais/patologia , Indução Enzimática/efeitos dos fármacos , Etídio , Corantes Fluorescentes , Peróxido de Hidrogênio/farmacologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Luminescência , NADPH Oxidases/genética , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ultrassonografia
11.
Exp Neurol ; 263: 200-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25263581

RESUMO

Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. We hypothesized that postnatal GC would induce hypomyelination and motor impairment in a preparation- and dose-specific manner, and that GC receptor (GR) inhibition might restore myelination and neurological function in GC-treated animals. Additionally, GC-induced hypomyelination and neurological deficit might be transient. To test our hypotheses, we treated prematurely delivered rabbit pups with high (0.5mg/kg/day) or low (0.2mg/kg/day) doses of dexamethasone or betamethasone. Myelin basic protein (MBP), oligodendrocyte proliferation and maturation, astrocytes, transcriptomic profile, and neurobehavioral functions were evaluated. We found that high-dose GC treatment, but not low-dose, reduced MBP expression and impaired motor function at postnatal day 14. High-dose dexamethasone induced astrogliosis, betamethasone did not. Mifepristone, a GR antagonist, reversed dexamethasone-induced myelination, but not astrogliosis. Both GCs inhibited oligodendrocyte proliferation and maturation. Moreover, high-dose dexamethasone altered genes associated with myelination, cell-cycle, GR, and mitogen-activated protein kinase. Importantly, GC-induced hypomyelination, gliosis, and motor-deficit, observed at day 14, completely recovered by day 21. Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in premature infants.


Assuntos
Encéfalo/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Bainha de Mielina/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Betametasona/administração & dosagem , Betametasona/efeitos adversos , Western Blotting , Encéfalo/patologia , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gliose/induzido quimicamente , Gliose/patologia , Glucocorticoides/administração & dosagem , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Bainha de Mielina/patologia , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/metabolismo
12.
Neuroreport ; 15(7): 1177-81, 2004 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15129169

RESUMO

We examined the effect of butyrate on neurotransmitter-related gene expression and calcium homeostasis in PC12 cells. Pretreatment with Ca2+ chelators (EGTA or BAPTA-AM) attenuated the butyrate-triggered accumulation of TH and ppEnk mRNA indicating that Ca2+ plays a role in butyrate-induced regulation of neuronal genes. Butyrate alone did not alter intracellular Ca2+ levels as determined by Fura-PE3 fluorescence; however, pretreatment with butyrate (18-24 h) reduced the first Ca2+ peak and prevented the second sustained rise in [Ca2+]i as induced by nicotine or ryanodine. In contrast, butyrate had no effect on Ca2+ transients when added shortly before or during nicotine or ryanodine stimulation. These results suggest that chronic butyrate exposure can modulate cell responses by affecting intracellular Ca2+ signaling.


Assuntos
Butiratos/farmacologia , Cálcio/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neurotransmissores/biossíntese , Animais , Regulação da Expressão Gênica/fisiologia , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Líquido Intracelular/fisiologia , Neurotransmissores/metabolismo , Células PC12 , Ratos
13.
Exp Neurol ; 247: 630-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23474192

RESUMO

Intraventricular hemorrhage (IVH) results in white matter injury and hydrocephalus in premature infants. Chondroitin sulfate proteoglycans (CSPGs)-neuorcan, brevican, versican, aggrecan and phosphacan-are unregulated in the extracellular matrix after brain injury, and their degradation enhances plasticity of the brain. Therefore, we hypothesized that CSPG levels were elevated in the forebrain of premature infants with IVH and that in vivo degradation of CSPGs would enhance maturation of oligodendrocyte, augment myelination, promote neurological recovery, and minimize hydrocephalus. We found that levels of neurocan, brevican, aggrecan, phosphacan, and versican were elevated, whereas NG2 expression was reduced in premature rabbit pups and human infants with IVH compared to controls. Intracerebroventricular chondroitinase ABC (ChABC) reduced the expression of neuorcan, brevican, versican and aggrecan, but not NG2. However, ChABC treatment did not enhance maturation of oligodendrocytes, myelination, or neurological recovery in the pups with IVH. Moreover, ChABC did not reduce gliosis or ventriculomegaly. Our results demonstrate that IVH induces distinct changes in the components of CSPGs, and that reversing these changes by in vivo ChABC treatment neither promotes clinical recovery, myelination, nor reduces ventriculomegaly in preterm rabbit pups.


Assuntos
Hemorragia Cerebral , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Recuperação de Função Fisiológica/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Antígenos/genética , Antígenos/metabolismo , Proliferação de Células/efeitos dos fármacos , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Condroitina ABC Liase/administração & dosagem , Proteoglicanas de Sulfatos de Condroitina/genética , Modelos Animais de Doenças , Feminino , Feto , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Gravidez , Proteoglicanas/genética , Proteoglicanas/metabolismo , Coelhos , Recuperação de Função Fisiológica/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa