Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 606, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926658

RESUMO

Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.


Assuntos
Antioxidantes , Daucus carota , Germinação , Nitratos , Compostos de Potássio , Plântula , Sementes , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Nitratos/metabolismo , Nitratos/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Daucus carota/crescimento & desenvolvimento , Daucus carota/efeitos dos fármacos , Daucus carota/fisiologia , Compostos de Potássio/farmacologia , Germinação/efeitos dos fármacos , Temperatura Alta
2.
Sci Rep ; 13(1): 21697, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066051

RESUMO

Pakistan is the 8th most climate-affected country in the globe along with a semi-arid to arid climate, thereby the crops require higher irrigation from underground water. Moreover, ~ 70% of pumped groundwater in irrigated agriculture is brackish and a major cause of secondary salinization. Cucumber (Cucumis sativus L.) is an important vegetable crop with an annual growth rate of about 3.3% in Pakistan. However, it is a relatively salt-sensitive crop. Therefore, a dire need for an alternate environment-friendly technology like grafting for managing salinity stress in cucumber by utilizing the indigenous cucurbit landraces. In this regard, a non-perforated pot-based study was carried out in a lath house to explore indigenous cucurbit landraces; bottle gourd (Lagenaria siceraria) (cv. Faisalabad Round), pumpkin (Cucurbit pepo. L) (cv. Local Desi Special), sponge gourd (Luffa aegyptiaca) (cv. Local) and ridge gourd (Luffa acutangula) (cv. Desi Special) as rootstocks for inducing salinity tolerance in cucumber (cv. Yahla F1). Four different salts (NaCl) treatments; T0 Control (2.4 dSm-1), T1 (4 dSm-1), T2 (6 dSm-1) and T3 (8 dSm-1) were applied. The grafted cucumber plants were transplanted into the already-induced salinity pots (12-inch). Different morpho-physio-biochemical, antioxidants, ionic, and yield attributes were recorded. The results illustrate that increasing salinity negatively affected the growing cucumber plants. However, grafted cucumber plants showed higher salt tolerance relative to non-grafted ones. Indigenous bottle gourd landrace (cv. Faisalabad Round) exhibited higher salt tolerance compared to non-grafted cucumber plants due to higher up-regulation of morpho-physio-biochemical, ionic, and yield attributes that was also confirmed by principal component analysis (PCA). Shoot and root biomass, chlorophylls contents (a and b), activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) enzymes, antioxidants scavenging activity (ASA), ionic (↑ K and Ca, ↓ Na), and yield-related attributes were found maximum in cucumber plants grafted onto indigenous bottle gourd landrace. Hence, the indigenous bottle gourd landrace 'cv. Faisalabad round' may be utilized as a rootstock for cucumber under a mild pot-based saline environment. However, indigenous bottle gourd landrace 'cv. Faisalabad round' may further be evaluated as rootstocks in moderate saline field conditions for possible developing hybrid rootstock and, subsequently, sustainable cucumber production.


Assuntos
Cucumis sativus , Cucurbita , Luffa , Tolerância ao Sal , Frutas , Agricultura/métodos , Antioxidantes
3.
J Exp Bot ; 63(15): 5593-606, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22915741

RESUMO

Universal stress protein (USP) appears to play an active role in the abiotic stress response, but their functions remain largely unknown in plants. A USP gene (SpUSP) was cloned from wild tomato (Solanum pennellii) and functionally characterized in cultivated tomato in the present study. The SpUSP transcript is abundantly accumulated in leaf stomata and its expression varied with the circadian rhythm. SpUSP was remarkably induced by dehydration, salt stress, oxidative stress, and the phytohormone abscisic acid (ABA) etc. This protein was predominantly localized in the nucleus and cell membrane. Overexpressing SpUSP increased drought tolerance of tomato in the seedling and adult stages. Under drought stress, the ABA content significantly increased in the SpUSP-overexpressing plants, which induced stomatal closure and reduced water loss, leading to the enhancement of drought tolerance. Based on the microarray data, a large number of chlorophyll a/b-binding proteins and photosystem-related genes were up-regulated in the SpUSP-overexpressing plants under drought conditions, which possibly enhanced the stomatal sensivitity to ABA and maintained the photosynthetic function. SpUSP overexpression also alleviated the oxidative damage accompanied by oxidative stress-responsive gene activation and osmolyte accumulation. Annexin (SGN-U314161) was found to interacte with SpUSP in the yeast two-hybrid method. This interaction was further confirmed by the bimolecular fluorescence complementation assay. The present study demonstrated that the annexin-interacting SpUSP plays important roles in the drought tolerance of tomato by influencing ABA-induced stomatal movement, increasing photosynthesis, and alleviating oxidative stress.


Assuntos
Ácido Abscísico/farmacologia , Anexinas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Solanum lycopersicum/fisiologia , Ácido Abscísico/análise , Ritmo Circadiano , Desidratação , Secas , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Fotossíntese , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Regulação para Cima , Água/metabolismo
4.
J Exp Bot ; 63(18): 6407-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23077200

RESUMO

Plants have evolved and adapted to different environments. Dwarfism is an adaptive trait of plants that helps them avoid high-energy costs under unfavourable conditions. The role of gibberellin (GA) in plant development has been well established. Several plant dehydration-responsive element-binding proteins (DREBs) have been identified and reported to be induced under abiotic and biotic stress conditions. A tomato DREB gene named SlDREB, which is a transcription factor and was cloned from cultivated tomato M82, was found to play a negative role in tomato plant architecture and enhances drought tolerance. Tissue expression profiles indicated that SlDREB was expressed mainly in the stem and leaf and could be induced by abscisic acid (ABA) but suppressed by GA and ethylene. SlDREB altered plant morphology by restricting leaf expansion and internode elongation when overexpressed, and the resulting dwarfism of tomato plants could be recovered by application of exogenous gibberellic acid (GA(3)). Transcriptional analysis of transgenic plants revealed that overexpression of SlDREB caused the dwarf phenotype by downregulating key genes involved in GA biosynthesis such as ent-copalyl diphosphate synthase (SlCPS) and GA 20-oxidases (SlGA20ox1, -2, and -4), thereby decreasing endogenous GA levels in transgenic plants. A yeast activity assay demonstrated that SlDREB specifically bound to dehydration-responsive element/C-repeat (DRE/CRT) elements of the SlCPS promoter region. Taken together, these data demonstrated that SlDREB can downregulate the expression of key genes required for GA biosynthesis and that it acts as a positive regulator in drought stress responses by restricting leaf expansion and internode elongation.


Assuntos
Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Regulação para Baixo , Etilenos/metabolismo , Giberelinas/metabolismo , Solanum lycopersicum/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
5.
Mol Biol Rep ; 39(2): 1713-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21637957

RESUMO

NAC (for NAM, ATAF1, 2, and CUC2) family genes have been found to play an important role in diversified developmental processes and environmental responses. A new NAC-type transcription factor SlNAC3 was primarily identified and isolated from the cDNA libraries of tomato cultivar Ailsa Craig. It contains three exons and two introns within genomic DNA sequence and encodes a polypeptide of 329 amino acids. A plant-specific and conserved NAC domain is located in the N-terminus of SlNAC3. The protein SlNAC3 is subcellularly localized in the nucleus of onion epidemical cells and it has a transcriptional activation domain in the C-terminal region which shows extremely divergent among NACs. Phylogenetic analysis showed that SlNAC3 belonged to the OsNAC3 subgroup of the NAC protein family. Tissue expression profile analysis revealed that SlNAC3 was expressed mainly in flower, fruit and root. The transcription expression of SlNAC3 was inhibited by salt, drought stress and ABA treatment. These data demonstrate that SlNAC3 might interact with environmental and endogenous stimuli and probably function when plants response to salt and drought stresses through ABA signaling pathways as a transcriptional activator.


Assuntos
Filogenia , Transdução de Sinais/genética , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Bases , Biologia Computacional , Componentes do Gene , Perfilação da Expressão Gênica , Biblioteca Gênica , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
6.
Plant Cell Physiol ; 52(6): 1055-67, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21576192

RESUMO

Wild species often show more tolerance to environmental stress factors than their cultivated counterparts. An early responsive-to-dehydration gene was cloned from a drought- and salt-tolerant wild tomato Solanum pennellii (SpERD15). SpERD15 transcript accumulated differentially in different organs, and was remarkably induced by dehydration, salinity, cold and treatment with plant growth regulators. The protein encoded by SpERD15 was predominantly localized in the nucleus. Interestingly, we found that the majority of the transgenic tobacco plants were co-suppressed along with the overexpressing line. Overexpressing plants manifested stress tolerance accompanied by the accumulation of more soluble sugars and proline, and limited lipid peroxidation compared with co-suppression lines, which were more sensitive than the wild type. The differential contents of these compatible solutes in different transgenic lines were related to the changes in the expression of the genes involved in the production of some important osmolytes (P5CS and Sucrose synthase). Reduced lipid peroxidation over a broad range of stress factors was in agreement with increased expression of stress-responsive genes (ADH and GAPDH). Overexpression of SpERD15 increased the efficiency of PSII (F(v)/F(m)) in transgenic tobacco plants by maintaining PSII quinone acceptors in a partially oxidized form. The results show that SpERD15 augments stress tolerance by enhancing the efficiency of PSII through the protection of cellular membranes, as conferred by the accumulation of compatible solutes and limited lipid peroxidation.


Assuntos
Aclimatação , Genes de Plantas , Proteínas de Plantas/metabolismo , Solanum/genética , Células Cultivadas , Clorofila/análise , Clonagem Molecular , Temperatura Baixa , Secas , Regulação da Expressão Gênica de Plantas , Germinação , Peroxidação de Lipídeos , Malondialdeído/análise , Oxirredução , Fenótipo , Fotossíntese , Complexo de Proteína do Fotossistema II/fisiologia , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Prolina/análise , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Salinidade , Sementes/fisiologia , Análise de Sequência de DNA , Análise de Sequência de Proteína , Solanum/metabolismo , Solanum/fisiologia , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia
7.
Transgenic Res ; 20(3): 569-81, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20835923

RESUMO

Expression of artificial microRNAs (amiRNAs) in plants can target and degrade the invading viral RNA, consequently conferring virus resistance. Two amiRNAs, targeting the coding sequence shared by the 2a and 2b genes and the highly conserved 3' untranslated region (UTR) of Cucumber mosaic virus (CMV), respectively, were generated and introduced into the susceptible tomato. The transgenic tomato plants expressing amiRNAs displayed effective resistance to CMV infection and CMV mixed with non-targeted viruses, including tobacco mosaic virus and tomato yellow leaf curl virus. A series of grafting assays indicate scions originated from the transgenic tomato plant maintain stable resistance to CMV infection after grafted onto a CMV-infected rootstock. However, the grafting assay also suggests that the amiRNA-mediated resistance acts in a cell-autonomous manner and the amiRNA signal cannot be transmitted over long distances through the vascular system. Moreover, transgenic plants expressing amiRNA targeting the 2a and 2b viral genes displayed slightly more effective to repress CMV RNA accumulation than transgenic plants expressing amiRNA targeting the 3' UTR of viral genome did. Our work provides new evidence of the use of amiRNAs as an effective approach to engineer viral resistance in the tomato and possibly in other crops.


Assuntos
Cucumovirus/patogenicidade , MicroRNAs/metabolismo , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/virologia , Vírus do Mosaico do Tabaco/patogenicidade , Cucumovirus/genética , Cucumovirus/metabolismo , Imunidade Inata , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , RNA Viral/genética , RNA Viral/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo
8.
Biotechnol Lett ; 33(2): 403-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20960221

RESUMO

Plant miRNA regulates multiple developmental and physiological processes, including drought responses. We found that the accumulation of Sly-miR169 in tomato (Solanum lycopersicum) was induced by drought stress. Consequently, Sly-miR169 targets, namely, three nuclear factor Y subunit genes (SlNF-YA1/2/3) and one multidrug resistance-associated protein gene (SlMRP1), were significantly down-regulated by drought stress. Constitutive over-expression of a miR169 family member, Sly-miR169c, in tomato plant can efficiently down-regulate the transcripts of the target genes. Compared with non-transgenic plants, transgenic plants over-expressing Sly-miR169c displayed reduced stomatal opening, decreased transpiration rate, lowered leaf water loss, and enhanced drought tolerance. Our study is the first to provide evidence that the Sly-miR169c negatively regulates stomatal movement in tomato drought responses.


Assuntos
Secas , Expressão Gênica , MicroRNAs/biossíntese , Solanum lycopersicum/fisiologia , Estresse Fisiológico , Acholeplasmataceae , Solanum lycopersicum/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia
9.
J Food Biochem ; 45(4): e13682, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724501

RESUMO

The effect of Aloe vera (ALV) coating was studied on chillies at 10 ± 1°C for 28 days. ALV gel-coated chillies showed reduced weight loss, disease incidence, red chili percentage, respiration rate, electrolyte leakage, hydrogen peroxide, and superoxide anion contents. The ALV coating maintained general acceptance in terms of visual quality and marketability index with higher chlorophyll contents, ascorbic acid contents, total phenolic contents, and total antioxidants. In addition, ascorbate peroxidase, catalase, superoxide dismutase, and peroxidase activities were markedly higher in coated chillies compared to control. The biochemical attributes such as soluble solids content, acidity, sugar: acid ratio, and juice pH were non-significantly affected by ALV application; however, the said attributes were comparatively higher in contrast to control. In conclusion, ALV edible coating could be used as an eco-friendly approach for delaying senescence and maintaining the postharvest quality of green chillies up to 28 days. PRACTICAL APPLICATIONS: Green chilies being highly perishable exhibit limited postharvest life with rapid loss of water, shrivelling, wilting, disease incidence, and reduced consumer acceptability. ALV gel coating significantly delayed postharvest senescence, reduced disease spread, maintained higher antioxidant activities of green chilies during cold storage. Therefore, ALV coating [50%] would be the suitable alternative to synthetic preservatives for extending the storage life and conserving the quality of green chilies.


Assuntos
Frutas , Preparações de Plantas , Antioxidantes/farmacologia , Ácido Ascórbico
11.
Environ Sci Pollut Res Int ; 25(25): 25155-25161, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29943247

RESUMO

Lack of scientific literature exists regarding the effects of gibberellic acid (GA3) application timings on various phenological and physiological aspects of seed crop of locally available onion cultivars. Therefore, current study was planned in Vegetable Research Area, University of Agriculture, Faisalabad to optimize the growth stage for GA3 application on seed production in two local onion cultivars (Phulkara and Dark Red) during 2013 and 2014. Application timings of gibberellins at 100 mg/L of H2O were as (G1) control (no spray), (G2) foliar application at 2-3 leaf stage, (G3) foliar application at 6-7 leaf stage, and (G4) foliar application at the time of flowering. Data on average of both years showed that tallest plants (66.15 cm) and maximum number of leaves per plant (84.56) were noted in cv. Phulkara when GA3 was applied at 2-3 leaf stage. Minimum number of days to initiate flowering (47.92) and maximum number of umbels per plant (15.45) were noted with GA3 application at 6-7 leaf stage in Phulkara and Dark Red, respectively. The highest seed yield per umbel (2.94 g) was recorded in cv. Dark Red when GA3 sprayed at 6-7 leaf stage, while GA3 application at the time of flowering in the cv. Phulkara produced seeds with highest seedling vigor index (586.79). Overall, it appears that seed yield and quality characters were promoted by the application of GA3 at different growth stages and could be valuable for seed production of onion.


Assuntos
Giberelinas/farmacologia , Cebolas/efeitos dos fármacos , Cebolas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
12.
Sci Rep ; 7(1): 10299, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860556

RESUMO

Adaptation to environmental changes is an important fitness trait for crop development. Photoperiod is an essential factor in seasonal control of flowering time. Sensing of day-length requires an interaction between the Photoperiod and the endogenous rhythms that is controlled by plant circadian clock. Thus, circadian clock is a critical regulator and internal molecular time-keeping mechanism, controlling key agricultural traits in crop plants such as the ability to adjust their growth and physiology to anticipate diurnal environmental changes. Here, we describe the gene Tomato Dof Daily Fluctuations 1 (TDDF1), which is involved in circadian regulation and stress resistance. Large daily oscillations in TDDF1 expression were retained after transferring to continuous dark (DD) or light (LL) conditions. Interestingly, overexpressing TDDF1 induce early flowering in tomato through up-regulation of the flowering-time control genes, moreover, by protein-protein interaction with the floral inducer SFT gene. Notably, overexpressing TDDF1 in tomato was associated with chlorophyll overaccumulation by up-regulating the related biosynthetic genes. TDDF1 expression results in improved drought, salt, various hormones stress tolerance alongwith resistance to late blight caused by Phytophthora infestans. This study can be a distinctive strategy to improve other economically important crops.


Assuntos
Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estresse Fisiológico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fenótipo , Fotoperíodo , Proteínas de Plantas/metabolismo , Ligação Proteica
13.
Foods ; 4(2): 51-64, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28231189

RESUMO

The maintenance of the quality and storage life of perishable fruits and vegetables is a major challenge for the food industry. In this study, the effects of different temperatures, packaging materials and storage time on the stability of capsaicinoids and antioxidants, such as total carotenoids, ascorbic acid and total phenolic compounds, were studied in three commercially cultivated hot pepper hybrids, namely Sky Red, Maha and Wonder King. For this purpose, dry whole pods were packed in jute bags and low-density polyethylene bags (LDPE), stored for five months under controlled conditions at 20, 25 or 30 ○C and analyzed on Day 0 and at 50-day intervals until Day 150. The three hot pepper hybrids differed significantly with respect to their capsaicinoids and antioxidant concentrations, but the results indicated that with the increase in storage temperature and time, a gradual and steady decrease in these levels was equally observed for all hybrids. Overall, mean concentrations after five months were significantly reduced by 22.6% for ascorbic acid, 19.0% for phenolic compounds, 17% for carotenoids and 12.7% for capsaicinoids. The trends of capsaicinoids and antioxidants evolution were decreasing gradually during storage until Day 150, this effect being more pronounced at higher temperature. Furthermore, the disappearance rates of capsaicinoids and antioxidants were higher in peppers packed in jute bags than in those wrapped with LDPE. In conclusion, despite the sensitivity of capsaicinoids and antioxidants to oxygen, light and moisture, the packaging in natural jute or synthetic LDPE plastic bags, as well as the storage at ambient temperature preserved between 77.4% and 87.3% of the initial amounts of these health- and nutrition-promoting compounds during five months' storage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa