RESUMO
Orphan solute carrier (SLC) represents a group of membrane transporters whose exact functions and substrate specificities are not known. Elucidating the function and regulation of orphan SLC transporters is not only crucial for advancing our knowledge of cellular and molecular biology but can potentially lead to the development of new therapeutic strategies. Here, we provide evidence for the biological function of a ubiquitous orphan lysosomal SLC, the Major Facilitator Superfamily Domain-containing Protein 1 (MFSD1), which has remained phylogenetically unassigned. Targeted metabolomics revealed that dipeptides containing either lysine or arginine residues accumulate in lysosomes of cells lacking MFSD1. Whole-cell patch-clamp electrophysiological recordings of HEK293-cells expressing MFSD1 on the cell surface displayed transport affinities for positively charged dipeptides in the lower mM range, while dipeptides that carry a negative net charge were not transported. This was also true for single amino acids and tripeptides, which MFSD1 failed to transport. Our results identify MFSD1 as a highly selective lysosomal lysine/arginine/histidine-containing dipeptide exporter, which functions as a uniporter.
Assuntos
Lisina , Proteínas de Membrana Transportadoras , Humanos , Arginina/metabolismo , Transporte Biológico , Dipeptídeos/metabolismo , Células HEK293 , Lisina/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfoproteínas/metabolismoRESUMO
Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs' complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.
Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteína Reguladora de Resposta a Leucina/metabolismo , Archaea/genética , Proteínas Arqueais/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteína Reguladora de Resposta a Leucina/genéticaRESUMO
Membrane transporters mediate the passage of molecules across membranes and are essential for cellular function. While the transmembrane region of these proteins is responsible for substrate transport, often the cytoplasmic regions are required for modulating their activity. However, it can be difficult to obtain atomic-resolution descriptions of these autoregulatory domains by classical structural biology techniques, especially if they lack a single, defined structure. The betaine permease, BetP, a homotrimer, is a prominent and well-studied example of a membrane protein whose autoregulation depends on cytoplasmic N- and C-terminal segments. These domains sense and transduce changes in K+ concentration and in lipid bilayer properties caused by osmotic stress. However, structural data for these terminal domains is incomplete, which hinders a clear description of the molecular mechanism of autoregulation. Here we used microsecond-scale molecular simulations of the BetP trimer to compare reported conformations of the 45-amino-acid long C-terminal tails. The simulations provide support for the idea that the conformation derived from electron microscopy (EM) data represents a more stable global orientation of the C-terminal segment under downregulating conditions while also providing a detailed molecular description of its dynamics and highlighting specific interactions with lipids, ions, and neighboring transporter subunits. A missing piece of the molecular puzzle is the N-terminal segment, whose dynamic nature has prevented structural characterization. Using Rosetta to generate ensembles of de novo conformations in the context of the EM-derived structure robustly identifies two features of the N-terminal tail, namely 1) short helical elements and 2) an orientation that would confine potential interactions to the protomer in the counterclockwise direction (viewed from the cytoplasm). Since each C-terminal tail only contacts the protomer in the clockwise direction, these results indicate an intricate interplay between the three protomers of BetP in the downregulated protein and a multidirectionality that may facilitate autoregulation of transport.
Assuntos
Simportadores , Subunidades Proteicas/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , Proteínas de Membrana/metabolismo , HomeostaseRESUMO
Mutations in the PKD2 gene cause autosomal-dominant polycystic kidney disease but the physiological role of polycystin-2, the protein product of PKD2, remains elusive. Polycystin-2 belongs to the transient receptor potential (TRP) family of non-selective cation channels. To test the hypothesis that altered ion channel properties of polycystin-2 compromise its putative role in a control circuit controlling lumen formation of renal tubular structures, we generated a mouse model in which we exchanged the pore loop of polycystin-2 with that of the closely related cation channel polycystin-2L1 (encoded by PKD2L1), thereby creating the protein polycystin-2poreL1. Functional characterization of this mutant channel in Xenopus laevis oocytes demonstrated that its electrophysiological properties differed from those of polycystin-2 and instead resembled the properties of polycystin-2L1, in particular regarding its permeability for Ca2+ ions. Homology modeling of the ion translocation pathway of polycystin-2poreL1 argues for a wider pore in polycystin-2poreL1 than in polycystin-2. In Pkd2poreL1 knock-in mice in which the endogenous polycystin-2 protein was replaced by polycystin-2poreL1 the diameter of collecting ducts was increased and collecting duct cysts developed in a strain-dependent fashion.
Assuntos
Cistos , Rim Policístico Autossômico Dominante , Animais , Canais de Cálcio , Túbulos Renais/metabolismo , Camundongos , Rim Policístico Autossômico Dominante/genética , Receptores de Superfície Celular , Transdução de Sinais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismoRESUMO
BACKGROUND: The endocytic reabsorption of proteins in the proximal tubule requires a complex machinery and defects can lead to tubular proteinuria. The precise mechanisms of endocytosis and processing of receptors and cargo are incompletely understood. EHD1 belongs to a family of proteins presumably involved in the scission of intracellular vesicles and in ciliogenesis. However, the relevance of EHD1 in human tissues, in particular in the kidney, was unknown. METHODS: Genetic techniques were used in patients with tubular proteinuria and deafness to identify the disease-causing gene. Diagnostic and functional studies were performed in patients and disease models to investigate the pathophysiology. RESULTS: We identified six individuals (5-33 years) with proteinuria and a high-frequency hearing deficit associated with the homozygous missense variant c.1192C>T (p.R398W) in EHD1. Proteinuria (0.7-2.1 g/d) consisted predominantly of low molecular weight proteins, reflecting impaired renal proximal tubular endocytosis of filtered proteins. Ehd1 knockout and Ehd1R398W/R398W knockin mice also showed a high-frequency hearing deficit and impaired receptor-mediated endocytosis in proximal tubules, and a zebrafish model showed impaired ability to reabsorb low molecular weight dextran. Interestingly, ciliogenesis appeared unaffected in patients and mouse models. In silico structural analysis predicted a destabilizing effect of the R398W variant and possible inference with nucleotide binding leading to impaired EHD1 oligomerization and membrane remodeling ability. CONCLUSIONS: A homozygous missense variant of EHD1 causes a previously unrecognized autosomal recessive disorder characterized by sensorineural deafness and tubular proteinuria. Recessive EHD1 variants should be considered in individuals with hearing impairment, especially if tubular proteinuria is noted.
Assuntos
Surdez , Peixe-Zebra , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Surdez/genética , Endocitose , Humanos , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Mutação , Proteinúria/metabolismo , Proteínas de Transporte Vesicular/genética , Adulto Jovem , Peixe-Zebra/metabolismoRESUMO
K+-Cl- cotransporters (KCCs) play important roles in physiological processes such as inhibitory neurotransmission and cell-volume regulation. KCCs exhibit significant variations in K+ affinities, yet recent atomic structures demonstrated that K+- and Cl--binding sites are highly conserved, raising the question of whether additional structural elements may contribute to ion coordination. The termini and the large extracellular domain (ECD) of KCCs exhibit only low sequence identity and were already discussed as modulators of transport activity. Here, we used the extracellular loop 2 (EL2) that links transmembrane helices (TMs) 3 and 4, as a mechanism to modulate ECD folding. We compared consequences of point mutations in the K+-binding site on the function of WT KCC2 and in a KCC2 variant, in which EL2 was structurally altered by insertion of a IFYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHAAA (3xHA) tag (36 amino acids). In WT KCC2, individual mutations of five residues in the K+-binding site resulted in a 2- to 3-fold decreased transport rate. However, the same mutations in the KCC2 variant with EL2 structurally altered by insertion of a 3xHA tag had no effect on transport activity. Homology models of mouse KCC2 with the 3xHA tag inserted into EL2 using ab initio prediction were generated. The models suggest subtle conformational changes occur in the ECD upon EL2 modification. These data suggest that a conformational change in the ECD, for example, by interaction with EL2, might be an elegant way to modulate the K+ affinity of the different isoforms in the KCC subfamily.
Assuntos
Simportadores/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Transporte de Íons , Cinética , Camundongos , Modelos Moleculares , Potássio/metabolismo , Conformação Proteica , Simportadores/química , Cotransportadores de K e Cl-RESUMO
It is well established that cancer cells acquire energy via the Warburg effect and oxidative phosphorylation. Citrate is considered to play a crucial role in cancer metabolism by virtue of its production in the reverse Krebs cycle from glutamine. Here, we review the evidence that extracellular citrate is one of the key metabolites of the metabolic pathways present in cancer cells. We review the different mechanisms by which pathways involved in keeping redox balance respond to the need of intracellular citrate synthesis under different extracellular metabolic conditions. In this context, we further discuss the hypothesis that extracellular citrate plays a role in switching between oxidative phosphorylation and the Warburg effect while citrate uptake enhances metastatic activities and therapy resistance. We also present the possibility that organs rich in citrate such as the liver, brain and bones might form a perfect niche for the secondary tumour growth and improve survival of colonising cancer cells. Consistently, metabolic support provided by cancer-associated and senescent cells is also discussed. Finally, we highlight evidence on the role of citrate on immune cells and its potential to modulate the biological functions of pro- and anti-tumour immune cells in the tumour microenvironment. Collectively, we review intriguing evidence supporting the potential role of extracellular citrate in the regulation of the overall cancer metabolism and metastatic activity.
Assuntos
Ácido Cítrico , Neoplasias , Citratos , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Humanos , Neoplasias/metabolismo , Fosforilação Oxidativa , Microambiente Tumoral/fisiologiaRESUMO
Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation.
Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Adulto , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Mutação , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genéticaRESUMO
One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic time point analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli. Bacteria grown at 23°C under aerobic conditions were shifted to 37°C, and mRNA expression was measured at time points after the shift to 37°C (t = 0.5, 1, and 4 h). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS and directly correlated with RpoS, DsrA, and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 h, gene expression shifted to aerobic respiration pathways and decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid and nucleotides), iron uptake, and host defense. ompT, a gene that confers resistance to antimicrobial peptides, was highly thermoregulated, with a pattern conserved in enteropathogenic and uropathogenic E. coli strains. An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit the survival of the bacterium within the host. IMPORTANCE As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial for survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs.
Assuntos
Temperatura Corporal , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Portador Sadio , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , TemperaturaRESUMO
Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.
Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Fusão de Membrana/fisiologia , Arginina/metabolismo , Arginina/fisiologia , Transporte Biológico , Membrana Celular/metabolismo , Cinética , Bicamadas Lipídicas/química , Fusão de Membrana/efeitos dos fármacos , Membranas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/fisiologia , Pseudópodes/metabolismo , Pseudópodes/fisiologiaRESUMO
Cryo-electron microscopy (cryo-EM) permits the determination of atomic protein structures by averaging large numbers of individual projection images recorded at cryogenic temperatures-a method termed single-particle analysis. The cryo-preservation traps proteins within a thin glass-like ice layer, making literally a freeze image of proteins in solution. Projections of randomly adopted orientations are merged to reconstruct a 3D density map. While atomic resolution for highly symmetric viruses was achieved already in 2009, the development of new sensitive and fast electron detectors has enabled cryo-EM for smaller and asymmetrical proteins including fragile membrane proteins. As one of the most important structural biology methods at present, cryo-EM was awarded in October 2017 with the Nobel Prize in Chemistry. The molecular understanding of Transient-Receptor-Potential (TRP) channels has been boosted tremendously by cryo-EM single-particle analysis. Several near-atomic and atomic structures gave important mechanistic insights, e.g., into ion permeation and selectivity, gating, as well as into the activation of this enigmatic and medically important membrane protein family by various chemical and physical stimuli. Lastly, these structures have set the starting point for the rational design of TRP channel-targeted therapeutics to counteract life-threatening channelopathies. Here, we attempt a brief introduction to the method, review the latest advances in cryo-EM structure determination of TRP channels, and discuss molecular insights into the channel function based on the wealth of TRP channel cryo-EM structures.
Assuntos
Microscopia Crioeletrônica/métodos , Canais de Potencial de Receptor Transitório/química , Animais , Humanos , Canais de Potencial de Receptor Transitório/metabolismoRESUMO
Betaine and Na(+) symport has been extensively studied in the osmotically regulated transporter BetP from Corynebacterium glutamicum, a member of the betaine/choline/carnitine transporter family, which shares the conserved LeuT-like fold of two inverted structural repeats. BetP adjusts its transport activity by sensing the cytoplasmic K(+) concentration as a measure for hyperosmotic stress via the osmosensing carboxy-terminal domain. BetP needs to be in a trimeric state for communication between individual protomers through several intratrimeric interaction sites. Recently, crystal structures of inward-facing BetP trimers have contributed to our understanding of activity regulation on a molecular level. Here we report new crystal structures, which reveal two conformationally asymmetric BetP trimers, capturing among them three distinct transport states. We observe a total of four new conformations at once: an outward-open apo and an outward-occluded apo state, and two closed transition states--one in complex with betaine and one substrate-free. On the basis of these new structures, we identified local and global conformational changes in BetP that underlie the molecular transport mechanism, which partially resemble structural changes observed in other sodium-coupled LeuT-like fold transporters, but show differences we attribute to the osmolytic nature of betaine, the exclusive substrate specificity and the regulatory properties of BetP.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Corynebacterium glutamicum/química , Multimerização Proteica , Apoproteínas/química , Apoproteínas/metabolismo , Betaína/química , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Citoplasma/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA , Modelos Moleculares , Periplasma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Conformação Proteica , Dobramento de Proteína , Sódio/metabolismo , Relação Estrutura-Atividade , SimportadoresRESUMO
Caged organic fluorophores are established tools for localization-based super-resolution imaging. Their use relies on reversible deactivation of standard organic fluorophores by chemical reduction or commercially available caged dyes with ON switching of the fluorescent signal by ultraviolet (UV) light. Here, we establish caging of cyanine fluorophores and caged rhodamine dyes, i.e., chemical deactivation of fluorescence, for single-molecule Förster resonance energy transfer (smFRET) experiments with freely diffusing molecules. They allow temporal separation and sorting of multiple intramolecular donor-acceptor pairs during solution-based smFRET. We use this "caged FRET" methodology for the study of complex biochemical species such as multisubunit proteins or nucleic acids containing more than two fluorescent labels. Proof-of-principle experiments and a characterization of the uncaging process in the confocal volume are presented. These reveal that chemical caging and UV reactivation allow temporal uncoupling of convoluted fluorescence signals from, e.g., multiple spectrally similar donor or acceptor molecules on nucleic acids. We also use caging without UV reactivation to remove unwanted overlabeled species in experiments with the homotrimeric membrane transporter BetP. We finally outline further possible applications of the caged FRET methodology, such as the study of weak biochemical interactions, which are otherwise impossible with diffusion-based smFRET techniques because of the required low concentrations of fluorescently labeled biomolecules.
Assuntos
Proteínas de Bactérias/química , Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Rodaminas/química , Simportadores/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Difusão , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Luz , Oligonucleotídeos/química , Oxirredução , Fosfinas/química , Processos Fotoquímicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simportadores/genética , Simportadores/metabolismo , TermodinâmicaRESUMO
The Na(+)-coupled betaine symporter BetP senses changes in the membrane state and increasing levels of cytoplasmic K(+) during hyperosmotic stress latter via its C-terminal domain and regulates transport activity according to both stimuli. This intriguing sensing and regulation behavior of BetP was intensively studied in the past. It was shown by several biochemical studies that activation and regulation depends crucially on the lipid composition of the surrounding membrane. In fact, BetP is active and regulated only when negatively charged lipids are present. Recent structural studies have revealed binding of phosphatidylglycerol lipids to functional important parts of BetP, suggesting a functional role of lipid interactions. However, a regulatory role of lipid interactions could only be speculated from the snapshot provided by the crystal structure. Here, we investigate the nature of lipid-protein interactions of BetP reconstituted in closely packed two-dimensional crystals of negatively charged lipids and probed at the molecular level with Fourier transform infrared (FTIR) spectroscopy. The FTIR data indicate that K(+) binding weakens the interaction of BetP especially with the anionic lipid head groups. We suggest a regulation mechanism in which lipid-protein interactions, especially with the C-terminal domain and the functional important gating helices transmembrane helice 3 (TMH3) and TMH12, confine BetP to its down-regulated transport state. As BetP is also activated by changes in the physical state of the membrane, our results point toward a more general mechanism of how active transport can be modified by dynamic lipid-protein interactions.
Assuntos
Proteínas de Bactérias/química , Corynebacterium glutamicum , Bicamadas Lipídicas/química , Modelos Moleculares , Simportadores/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Detergentes/química , Ativação Enzimática , Glucosídeos/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Potássio/química , Potássio/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Simportadores/antagonistas & inibidores , Simportadores/genética , Simportadores/metabolismo , TemperaturaRESUMO
For 25 years, the amyloid cascade hypothesis, based on the finding that mutations in the amyloid precursor protein are closely linked to familial forms of Alzheimer's disease (AD), dominated the research on this disease. Recent failures of clinical anti-amyloidogenic trials, however, substantially support the reasoning (i) that the pathomechanisms that trigger familial AD, namely the generation, aggregation, and deposition of amyloid beta, cannot necessarily be extrapolated to sporadic cases and (ii) that amyloid beta represents a prominent histopathological feature in AD but not its exclusive causative factor. In autumn 2016, the Volkswagen Foundation hosted the Herrenhausen Symposium 'Beyond Amyloid - Widening the View on Alzheimer's Disease' in Hannover, Germany, to bring together current knowledge on cellular and molecular processes that contribute to AD pathogenesis independent of or alongside with the amyloid biochemistry. The following mini review series was authored by key speakers at the meeting, and highlights some of the mechanisms potentially involved in AD etiology that provide alternative viewpoints and mechanisms beyond the amyloid cascade hypothesis. This article is part of the series "Beyond Amyloid".
Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Congressos como Assunto , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/diagnóstico , Amiloidose/metabolismo , Amiloidose/terapia , Animais , HumanosRESUMO
Bilayer lipids contribute to the stability of membrane transporters and are crucially involved in their proper functioning. However, the molecular knowledge of how surrounding lipids affect membrane transport is surprisingly limited and despite its general importance is rarely considered in the molecular description of a transport mechanism. One reason is that only few atomic resolution structures of channels or transporters reveal a functional interaction with lipids, which are difficult to detect in X-ray structures per se. Overcoming these difficulties, we report here on a new structure of the osmotic stress-regulated betaine transporter BetP in complex with anionic lipids. This lipid-associated BetP structure is important in the molecular understanding of osmoregulation due to the strong dependence of activity regulation in BetP on the presence of negatively charged lipids. We detected eight resolved palmitoyl-oleoyl phosphatidyl glycerol (PG) lipids mimicking parts of the membrane leaflets and interacting with key residues in transport and regulation. The lipid-protein interactions observed here in structural detail in BetP provide molecular insights into the role of lipids in osmoregulated secondary transport.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Corynebacterium glutamicum/enzimologia , Lipídeos/química , Transporte Biológico , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Pressão Osmótica , Estrutura Terciária de Proteína , SimportadoresRESUMO
Genetic code expansion through amber stop codon suppression provides a powerful tool for introducing non-proteinogenic functionalities into proteins for a broad range of applications. However, ribosomal incorporation of noncanonical amino acids (ncAAs) by means of engineered aminoacyl-tRNA synthetases (aaRSs) often proceeds with significantly reduced efficiency compared to sense codon translation. Here, we report the implementation of a versatile platform for the development of engineered aaRSs with enhanced efficiency in mediating ncAA incorporation by amber stop codon suppression. This system integrates a white/blue colony screen with a plate-based colorimetric assay, thereby combining high-throughput capabilities with reliable and quantitative measurement of aaRS-dependent ncAA incorporation efficiency. This two-tier functional screening system was successfully applied to obtain a pyrrolysyl-tRNA synthetase (PylRS) variant (CrtK-RS(4.1)) with significantly improved efficiency (+250-370 %) for mediating the incorporation of Nϵ -crotonyl-lysine and other lysine analogues of relevance for the study of protein post-translational modifications into a target protein. Interestingly, the beneficial mutations accumulated by CrtK-RS(4.1) were found to localize within the noncatalytic N-terminal domain of the enzyme and could be transferred to another PylRS variant, improving the ability of the variant to incorporate its corresponding ncAA substrate. This work introduces an efficient platform for the improvement of aaRSs that could be readily extended to other members of this enzyme family and/or other target ncAAs.
Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Methanosarcina barkeri/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Códon de Terminação , Evolução Molecular Direcionada , Escherichia coli/enzimologia , Código Genético , Ensaios de Triagem em Larga Escala , Lisina/análogos & derivados , Lisina/genética , Lisina/metabolismo , Methanosarcina barkeri/enzimologia , Mutação , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/química , Ribossomos/metabolismoRESUMO
BACKGROUND: Structural evidences with functional corroborations have revealed distinct features of lipid-protein interactions especially in channels and receptors. Many membrane embedded transporters are also known to require specific lipids for their functions and for some of them cellular and biochemical data suggest tight regulation by the lipid bilayer. However, molecular details on lipid-protein interactions in transporters are sparse since lipids are either depleted from the detergent solubilized transporters in three-dimensional crystals or not readily resolved in crystal structures. Nevertheless the steady increase in the progress of transporter structure determination contributed more examples of structures with resolved lipids. SCOPE OF REVIEW: This review gives an overview on transporter structures in complex with lipids reported to date and discusses commonly encountered difficulties in the identification of functionally significant lipid-protein interactions based on those structures and functional in vitro data. Recent structures provided molecular details into regulation mechanism of transporters by specific lipids. The review highlights common findings and conserved patterns for distantly related transporter families to draw a more general picture on the regulatory role of lipid-protein interactions. MAJOR CONCLUSIONS: Several common themes of the manner in which lipids directly influence membrane-mediated folding, oligomerization and structure stability can be found. Especially for LeuT-like fold transporters similarities in structurally resolved lipid-protein interactions suggest a common way in which transporter conformations are affected by lipids even in evolutionarily distinct transporters. Lipids appear to play an additional role as joints mechanically reinforcing the inverted repeat topology, which is a major determinant in the alternating access mechanism of secondary transporters. GENERAL SIGNIFICANCE: This review brings together and adds to the repertoire of knowledge on lipid-protein interactions of functional significance presented in structures of membrane transporters. Knowledge of specific lipid-binding sites and modes of lipid influence on these proteins not only accomplishes the molecular description of transport cycle further, but also sheds light into localization dependent differences of transporter function. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Estrutura Terciária de Proteína , Animais , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Ligação ProteicaRESUMO
The osmolyte and folding chaperone betaine is transported by the renal Na(+)-coupled GABA (γ-aminobutyric acid) symporter BGT-1 (betaine/GABA transporter 1), a member of the SLC6 (solute carrier 6) family. Under hypertonic conditions, the transcription, translation and plasma membrane (PM) insertion of BGT-1 in kidney cells are significantly increased, resulting in elevated betaine and GABA transport. Re-establishing isotonicity involves PM depletion of BGT-1. The molecular mechanism of the regulated PM insertion of BGT-1 during changes in osmotic stress is unknown. In the present study, we reveal a link between regulated PM insertion and N-glycosylation. Based on homology modelling, we identified two sites (Asn(171) and Asn(183)) in the extracellular loop 2 (EL2) of BGT-1, which were investigated with respect to trafficking, insertion and transport by immunogold-labelling, electron microscopy (EM), mutagenesis and two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radiolabelled substrate into MDCK (Madin-Darby canine kidney) and HEK293 (human embryonic kidney) cells. Trafficking and PM insertion of BGT-1 was clearly promoted by N-glycosylation in both oocytes and MDCK cells. Moreover, association with N-glycans at Asn(171) and Asn(183) contributed equally to protein activity and substrate affinity. Substitution of Asn(171) and Asn(183) by aspartate individually caused no loss of BGT-1 activity, whereas the double mutant was inactive, suggesting that N-glycosylation of at least one of the sites is required for function. Substitution by alanine or valine at either site caused a dramatic loss in transport activity. Furthermore, in MDCK cells PM insertion of N183D was no longer regulated by osmotic stress, highlighting the impact of N-glycosylation in regulation of this SLC6 transporter.
Assuntos
Betaína/metabolismo , Proteínas de Transporte/metabolismo , Rim/metabolismo , Sequência de Aminoácidos , Animais , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Transporte/genética , Cães , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA , Glicosilação , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Pressão Osmótica , Polissacarídeos/metabolismo , Transporte Proteico , Homologia de Sequência de Aminoácidos , Xenopus laevis , Ácido gama-Aminobutírico/metabolismoRESUMO
BetP is an Na(+)-coupled betaine-specific transporter of the betaine-choline-carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT-fold) that BetP shares with other sequence-unrelated Na(+)-coupled symporters. Numerous structures of LeuT-fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co-transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single-point mutation--glycine to aspartate--into an H(+)-coupled choline-specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP-G153D demonstrates a new inward-facing open conformation for BetP. Choline binding to a location close to the second, low-affinity sodium-binding site (Na2) of LeuT-fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation-binding site in BetP, playing a key role in a proposed molecular mechanism of Na(+) and H(+) coupling in BCC transporters.