Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Virol ; 87(7): 3930-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365421

RESUMO

Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4(+) and CD8(+) T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease.


Assuntos
Adjuvantes Imunológicos/farmacologia , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Imunoterapia/métodos , Linfócitos T/imunologia , Vacinas Virais/imunologia , Análise de Variância , Animais , Baculoviridae , Western Blotting , Chlorocebus aethiops , Clonagem Molecular , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , ELISPOT , Cobaias , Herpes Genital/terapia , Camundongos , Testes de Neutralização , Células Vero , Proteínas do Envelope Viral/imunologia , Vacinas Virais/farmacologia , Eliminação de Partículas Virais/imunologia
3.
Vaccine ; 27(39): 5393-401, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19596415

RESUMO

Prophylactic immunization against influenza infection requires CD4+ T-helper cell activity for optimal humoral and cellular immunity. Currently there is one FDA approved H5N1 subvirion vaccine available, although stockpiles of this vaccine are insufficient for broad population coverage and the vaccine has only demonstrated modest immunogenicity. Specific activation of CD4+ T-helper cells using class II H5N1 HA peptide vaccines may be a useful component in immunization strategy and design. Identification of HLA class II HA epitopes was undertaken in this report by obtaining PBMCs from volunteers previously immunized with an H5N1 inactivated subvirion vaccine, followed by direct ex vivo stimulation of CD4+ T cells against different sources of potential HA class II epitopes. In the 1st round of analysis, 35 donors were tested via IFN-gamma ELISPOT using pools of overlapping HA peptides derived from the H5N1 A/Thailand/4(SP-528)/2004 virus, recombinant H5N1 (rHA) and inactivated H5N1 subvirion vaccine. In addition, a series of algorithm-predicted epitopes coupled with the Ii-Key moiety of the MHC class II-associated invariant chain for enhanced MHC class II charging were also included. Specific responses were observed for all 20 peptide pools, with 6-26% of vaccinated individuals responding to any given pool (donor response frequency) and a magnitude of response ranging from 3- to >10-fold above background levels. Responses were similarly observed with the majority of algorithm-predicted epitopes, with a donor response frequency of up to 29% and a magnitude of response ranging from 3-10-fold (11/24 peptides) to >10-fold above background (7/24 peptides). PBMCs from vaccine recipients that had detectable responses to H5N1 rHA following 1st round analysis were used in a 2nd round of testing to confirm the identity of specific peptides based on the results of the 1st screening. Sixteen individual HA peptides identified from the library elicited CD4+ T cell responses between 3- and >10-fold above background, with two peptides being recognized in 21% of recipients tested. Eight of the putative MHC class II epitopes recognized were found in regions showing partial to significant sequence homology with New Caledonia H1N1 influenza HA, while eight were unique to H5N1 HA. This is the first study to identify H5N1 HA epitope-specific T cells in vaccine recipients and offers hope for the design of a synthetic peptide vaccine to prime CD4+ T-helper cells. Such a vaccine could be used to provide at least some minimal level of H5N1 protection on its own and/or prime for a subsequent dose of a more traditional but supply-limited vaccine.


Assuntos
Hemaglutininas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Adulto , Idoso , Algoritmos , Linfócitos T CD4-Positivos/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Influenza Humana/imunologia , Interferon gama/imunologia , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa