Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biologicals ; 45: 96-101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27773423

RESUMO

In vitro cell-based models are important tools for assessing efficacies of new leads in early phases of drug development. Human osteoarthritic chondrocytes (OACs), obtained from biomedical waste material, represent a valuable, relatively accessible cellular source that could be used for this purpose. By employing reverse transcription-polymerase chain reaction (qRT-PCR) we compared gene expression profiles of key anabolic, catabolic and inflammatory genes of freshly isolated vs. monolayer cultured OACs (passages P0-P2) and non-stimulated vs. tumor necrosis factor alpha (TNF-α) stimulated P2 OACs. After expansion of OACs in monolayer cultures, the expression of almost all analyzed genes significantly decreased. The subsequent addition of TNF-α to OACs at P2 significantly increased expressions of all catabolic and inflammatory genes, leaving the anabolic profile almost unchanged. TNF-α-treated OACs were later utilized for efficacy testing of anti-TNF-α drugs infliximab and etanercept and both significantly reduced the expressions of all catabolic and inflammatory genes tested.


Assuntos
Condrócitos/metabolismo , Etanercepte , Infliximab , Osteoartrite do Joelho/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Idoso , Avaliação Pré-Clínica de Medicamentos/métodos , Etanercepte/química , Etanercepte/farmacologia , Feminino , Humanos , Infliximab/química , Infliximab/farmacologia , Masculino , Pessoa de Meia-Idade
2.
J Tissue Eng Regen Med ; 16(2): 207-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861104

RESUMO

Cartilage damage typically starts at its surface, either due to wear or trauma. Treatment of these superficial defects is important in preventing degradation and osteoarthritis. Biomaterials currently used for deep cartilage defects lack appropriate properties for this application. Therefore, we investigated photo-crosslinked gelatin methacryloyl (gelMA) as a candidate for treatment of surface defects. It allows for liquid application, filling of surface defects and forming a protective layer after UV-crosslinking, thereby keeping therapeutic cells in place. gelMA and photo-initiator lithium phenyl-2,4,6-trimethyl-benzoylphosphinate (Li-TPO) concentration were optimized for application as a carrier to create a favorable environment for human articular chondrocytes (hAC). Primary hAC were used in passages 3 and 5, encapsulated into two different gelMA concentrations (7.5 wt% (soft) and 10 wt% (stiff)) and cultivated for 3 weeks with TGF-ß3 (0, 1 and 10 ng/mL). Higher TGF-ß3 concentrations induced spherical cell morphology independent of gelMA stiffness, while low TGF-ß3 concentrations only induced rounded morphology in stiff gelMA. Gene expression did not vary across gel stiffnesses. As a functional model gelMA was loaded with two different cell types (hAC and/or human adipose-derived stem cells [ASC/TERT1]) and applied to human osteochondral osteoarthritic plugs. GelMA attached to the cartilage, smoothened the surface and retained cells in place. Resistance against shear forces was tested using a tribometer, simulating normal human gait and revealing maintained cell viability. In conclusion gelMA is a versatile, biocompatible material with good bonding capabilities to cartilage matrix, allowing sealing and smoothening of superficial cartilage defects while simultaneously delivering therapeutic cells for tissue regeneration.


Assuntos
Condrócitos , Engenharia Tecidual , Cartilagem/metabolismo , Gelatina/metabolismo , Gelatina/farmacologia , Humanos , Hidrogéis/farmacologia , Metacrilatos
3.
Tissue Eng Part A ; 25(19-20): 1369-1380, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30632465

RESUMO

Hydrogels represent an attractive material platform for realization of three-dimensional (3D) tissue-engineered constructs, as they have tunable mechanical properties, are compatible with different types of cells, and resemble elements found in natural extracellular matrices. So far, numerous hydrogel-cartilage/bone tissue engineering (TE)-related studies were performed by utilizing a single cell encapsulation approach. Although multicellular spheroid cultures exhibit advantageous properties for cartilage or bone TE, the chondrogenic or osteogenic differentiation potential of stem cell microspheroids within hydrogels has not been investigated much. This study explores, for the first time, how stiffness of gelatin-based hydrogels (having a storage modulus of 538, 3584, or 7263 Pa) affects proliferation and differentiation of microspheroids formed from telomerase-immortalized human adipose-derived stem cells (hASC/hTERT). Confocal microscopy indicates that all tested hydrogels supported cell viability during their 3- to 5-week culture period in the control, chondrogenic, or osteogenic medium. Although in the softer hydrogels cells from neighboring microspheroids started outgrowing and interconnecting within a few days, their protrusion was slower or limited in stiffer hydrogels or those cultured in chondrogenic medium, respectively. High expressions of chondrogenic markers (SOX9, ACAN, COL2A1), detected in all tested hydrogels, proved that the chondrogenic differentiation of hASC/hTERT microspheroids was very successful, especially in the two softer hydrogels, where superior cartilage-specific properties were confirmed by Alcian blue staining. These chondrogenically induced samples also expressed COL10A1, a marker of chondrocyte hypertrophy. Interestingly, the hydrogel itself (with no differentiation medium) showed a slight chondrogenic induction. Regardless of the hydrogel stiffness, in the samples stimulated with osteogenic medium, the expression of selected markers RUNX2, BGLAP, ALPL, and COL1A1 was not conclusive. Nevertheless, the von Kossa staining confirmed the presence of calcium deposits in osteogenically stimulated samples in the two softer hydrogels, suggesting that these also favor osteogenesis. This observation was also confirmed by Alizarin red quantification assay, with which higher amounts of calcium were detected in the osteogenically induced hydrogels than in their controls. The presented data indicate that the encapsulation of adipose-derived stem cell microspheroids in gelatin-based hydrogels show promising potential for future applications in cartilage or bone TE. Impact Statement Osteochondral defects represent one of the leading causes of disability in the world. Although numerous tissue engineering (TE) approaches have shown success in cartilage and bone tissue regeneration, achieving native-like characteristics of these tissues remains challenging. This study demonstrates that in the presence of a corresponding differentiation medium, gelatin-based hydrogels support moderate osteogenic and excellent chondrogenic differentiation of photo-encapsulated human adipose-derived stem cell microspheroids, the extent of which depends on hydrogel stiffness. Because photosensitive hydrogels are a convenient material platform for creating stiffness gradients in three dimensions, the presented microspheroid-hydrogel encapsulation strategy holds promise for future strategies of cartilage or bone TE.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Hidrogéis/farmacologia , Esferoides Celulares/citologia , Células-Tronco/citologia , Cálcio/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Reologia , Esferoides Celulares/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
4.
Biotechnol Prog ; 34(4): 1045-1058, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29536646

RESUMO

Inflammation plays a major role in progression of rheumatoid arthritis, a disease treated with antagonists of tumor necrosis factor-alpha (TNF-α) and interleukin 1ß (IL-1ß). New in vitro testing systems are needed to evaluate efficacies of new anti-inflammatory biological drugs, ideally in a patient-specific manner. To address this need, we studied microspheroids containing 10,000 human osteoarthritic primary chondrocytes (OACs) or chondrogenically differentiated mesenchymal stem cells (MSCs), obtained from three donors. Hypothesizing that this system can recapitulate clinically observed effects of anti-inflammatory drugs, spheroids were exposed to TNF-α, IL-1ß, or to supernatant containing secretome from activated macrophages (MCM). The anti-inflammatory efficacies of anti-TNF-α biologicals adalimumab, infliximab, and etanercept, and the anti-IL-1ß agent anakinra were assessed in short-term microspheroid and long-term macrospheroid cultures (100,000 OACs). While gene and protein expressions were evaluated in microspheroids, diameters, amounts of DNA, glycosaminoglycans, and hydroxiproline were measured in macrospheroids. The tested drugs significantly decreased the inflammation induced by TNF-α or IL-1ß. The differences in potency of anti-TNF-α biologicals at 24 h and 3 weeks after their addition to inflamed spheroids were comparable, showing high predictability of short-term cultures. Moreover, the data obtained with microspheroids grown from OACs and chondrogenically differentiated MSCs were comparable, suggesting that MSCs could be used for this type of in vitro testing. We propose that in vitro gene expression measured after the first 24 h in cultures of chondrogenically differentiated MSCs can be used to determine the functionality of anti-TNF-α drugs in personalized and preclinical studies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1045-1058, 2018.


Assuntos
Condrócitos/metabolismo , Interleucina-1beta/antagonistas & inibidores , Células-Tronco Mesenquimais/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Diferenciação Celular/fisiologia , Células Cultivadas , Condrócitos/citologia , Condrogênese/fisiologia , Humanos , Interleucina-1beta/imunologia , Células-Tronco Mesenquimais/citologia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa