Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 376(2): 236-239, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30633879

RESUMO

It is well understood that replicative and transcriptional responses in the nucleus occur under the influence of specific extracellular biochemical signals (e.g. growth factors and cytokines). However, it has become apparent recently that the nucleus is also able to sense and respond to more generic cues, such as physical forces and mechanical constraints. Indeed, being the largest and stiffest intracellular organelle, the nucleus is exposed to various types of forces acting from inside and outside the cell. These forces result in global and local deformations of the nucleus, which can significantly affect spatial organization and mechanical state of the nuclear envelope (NE). Considering that peripheral chromatin is attached to the NE, forces applied to the NE are transmitted to chromatin. This, in turn, can impact chromatin organization, dynamics, and activity. Where do these forces originate from and what are the physiological contexts in which they modulate critical nuclear activities? Discussing these questions is the main goal of the present mini-review.


Assuntos
Núcleo Celular/fisiologia , Fenômenos Fisiológicos Celulares , Epigênese Genética , Animais , Fenômenos Biomecânicos , Núcleo Celular/genética , Humanos
2.
Acta Neuropathol ; 129(6): 849-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25720744

RESUMO

Diffuse gliomas are the most common malignant primary tumors of the central nervous system. Like other neoplasms, these gliomas release molecular information into the circulation. Tumor-derived biomarkers include proteins, nucleic acids, and tumor-derived extracellular vesicles that accumulate in plasma, serum, blood platelets, urine and/or cerebrospinal fluid. Recently, also circulating tumor cells have been identified in the blood of glioma patients. Circulating molecules, vesicles, platelets, and cells may be useful as easily accessible diagnostic, prognostic and/or predictive biomarkers to guide patient management. Thereby, this approach may help to circumvent problems related to tumor heterogeneity and sampling error at the time of diagnosis. Also, liquid biopsies may allow for serial monitoring of treatment responses and of changes in the molecular characteristics of gliomas over time. In this review, we summarize the literature on blood-based biomarkers and their potential value for improving the management of patients with a diffuse glioma. Incorporation of the study of circulating molecular biomarkers in clinical trials is essential for further assessment of the potential of liquid biopsies in this context.


Assuntos
Biópsia/métodos , Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Biomarcadores Tumorais/metabolismo , Humanos
3.
Stem Cell Reports ; 18(11): 2047-2055, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37832539

RESUMO

Single-cell RNA sequencing (scRNA-seq) of human skin provides a tool for validating observations from in vitro experimental models. By analyzing a published dataset of healthy adult epidermis, we confirm that the basal epidermal layer is heterogeneous, and three subpopulations of non-dividing cells can be distinguished. We show that Delta-like ligand 1 (DLL1) is expressed in a subset of basal cells previously identified as stem cells in cultured human keratinocytes and map the distribution of other Notch ligands and receptors to specific epidermal cell compartments. Although DLL1 is expressed at low levels, it is expressed in the same cell state as the Notch regulator, Lunatic -fringe (LFNG, O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase). Overexpression of LFNG amplifies the effects of DLL1 in cultured keratinocytes, increasing proliferation and colony-forming ability. We conclude that using scRNA-seq resources from healthy human skin not only validates previous experimental data but allows formulation of testable new hypotheses.


Assuntos
Glicosiltransferases , Receptores Notch , Adulto , Humanos , Receptores Notch/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Transdução de Sinais , Epiderme/metabolismo , Queratinócitos/metabolismo , Células-Tronco/metabolismo , Análise de Sequência de RNA
4.
Curr Top Dev Biol ; 150: 129-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817501

RESUMO

The interfollicular epidermis is the multilayered epithelium that forms the outer layer of the skin. It is maintained by stem cells that are attached to a basement membrane, which lies on top of the underlying connective tissue, the dermis. Cells undergo terminal differentiation as they detach from the basement membrane and move toward the outer epidermal surface. Over time, many of the molecular regulators of this process have been identified. It is now is clear that these pathways also receive critical input from the physical properties of the tissue. In this review, we describe how changes in these factors regulate differentiation and how new insights from single cell RNA sequencing could provide validation or challenge to the existing experimental models.


Assuntos
Adesivos , Células Epidérmicas , Adesivos/metabolismo , Diferenciação Celular , Epiderme/fisiologia , Humanos , Pele
5.
Acta Biomater ; 150: 265-276, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926780

RESUMO

The balance between stem cell renewal and differentiation is determined by the interplay between intrinsic cellular controls and extrinsic factors presented by the microenvironment, or 'niche'. Previous studies on cultured human epidermis have utilised suspension culture and restricted cell spreading to investigate regulation of differentiation in single keratinocytes. However, keratinocytes are typically adherent to neighbouring cells in vivo. We therefore developed experimental models to investigate the combined effects of cell-ECM adhesion and cell-cell contact. We utilized lipid-modified oligonucleotides to form clusters of keratinocytes which were subsequently placed in suspension to induce terminal differentiation. In this experimental model cell-cell contact had no effect on suspension-induced differentiation of keratinocytes. We next developed a high-throughput platform for robust geometrical confinement of keratinocytes to hexagonal ECM-coated islands permitting direct cell-cell contact between single cells. As in the case of circular islands, differentiation was stimulated on the smallest single hexagonal islands. However, the percentage of involucrin-positive cells on small bowtie islands was significantly lower than on single islands, demonstrating that cell-cell contact reduced differentiation in response to decreased substrate adhesion. None of the small bowtie islands contained two involucrin-positive cells. Rather, if one cell was involucrin-positive the other was involucrin-negative. This suggests that there is intrinsic asymmetry in the effect of cell-cell contact in decreasing differentiation. Thus, our reductionist approaches provide new insights into the effect of the niche on keratinocyte differentiation. STATEMENT OF SIGNIFICANCE: Stem cell behaviour is regulated by a combination of external signals, including the nature of the adhesive substrate and cell-cell interactions. An understanding of how different signals are integrated creates the possibility of developing new biomaterials to promote tissue regeneration and broaden our understanding of skin diseases such as eczema and psoriasis, in which stem cell proliferation and differentiation are perturbed. In this study we have applied two methods to engineer intercellular adhesion of human epidermal stem cells, one involving lipid-modified DNA and the other involving hexagonal micropatterns. We show that the effect of cell-cell adhesion depends on cell-substrate adhesion and uncover evidence that two cells in equivalent environments can nevertheless behave differently.


Assuntos
Epiderme , Queratinócitos , Diferenciação Celular , Células Cultivadas , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Lipídeos/farmacologia , Células-Tronco
6.
Acta Biomater ; 87: 256-264, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710711

RESUMO

In human skin the junction between epidermis and dermis undulates, the width and depth of the undulations varying with age and disease. When primary human epidermal keratinocytes are seeded on collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the epidermal-dermal interface, the stem cells become patterned by 24 h, resembling their organisation in living skin. We found that cell density and nuclear height were higher at the base than the tips of the PDMS features. Cells on the tips not only expressed higher levels of the stem cell marker ß1 integrin but also had elevated E-cadherin, Desmoglein 3 and F-actin than cells at the base. In contrast, levels of the transcriptional cofactor MAL were higher at the base. AFM measurements established that the Young's modulus of cells on the tips was lower than on the base or cells on flat substrates. The differences in cell stiffness were dependent on Rho kinase activity and intercellular adhesion. On flat substrates the Young's modulus of calcium-dependent intercellular junctions was higher than that of the cell body, again dependent on Rho kinase. Cell patterning was influenced by the angle of the slope on undulating substrates. Our observations are consistent with the concept that epidermal stem cell patterning is dependent on mechanical forces exerted at intercellular junctions in response to undulations in the epidermal-dermal interface. STATEMENT OF SIGNIFICANCE: In human skin the epidermal-dermal junction undulates and epidermal stem cells are patterned according to their position. We previously created collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the undulations and provide sufficient topographical information for stem cells to cluster on the tips. Here we show that the stiffness of cells on the tips is lower than cells on the base. The differences in cell stiffness depend on Rho kinase activity and intercellular adhesion. We propose that epidermal stem cell patterning is determined by mechanical forces exerted at intercellular junctions in response to the slope of the undulations.


Assuntos
Derme/metabolismo , Dimetilpolisiloxanos/química , Elastômeros/química , Epiderme/metabolismo , Queratinócitos/metabolismo , Células-Tronco/metabolismo , Antígenos de Diferenciação/biossíntese , Derme/citologia , Módulo de Elasticidade , Humanos , Queratinócitos/citologia , Células-Tronco/citologia
7.
Acta Biomater ; 84: 133-145, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528608

RESUMO

Human epidermal stem cells initiate terminal differentiation when spreading is restricted on ECM-coated micropatterned islands, soft hydrogels or hydrogel-nanoparticle composites with high nanoparticle spacing. The effect of substrate topography, however, is incompletely understood. To explore this, primary human keratinocytes enriched for stem cells were seeded on a topographical library with over 2000 different topographies in the micrometre range. Twenty-four hours later the proportion of cells expressing the differentiation marker transglutaminase-1 was determined by high content imaging. As predicted, topographies that prevented spreading promoted differentiation. However, we also identified topographies that supported differentiation of highly spread cells. Topographies supporting differentiation of spread cells were more irregular than those supporting differentiation of round cells. Low topography coverage promoted differentiation of spread cells, whereas high coverage promoted differentiation of round cells. Based on these observations we fabricated a topography in 6-well plate format that supported differentiation of spread cells, enabling us to examine cell responses at higher resolution. We found that differentiated spread cells did not assemble significant numbers of hemidesmosomes, focal adhesions, adherens junctions, desmosomes or tight junctions. They did, however, organise the actin cytoskeleton in response to the topographies. Rho kinase inhibition and blebbistatin treatment blocked the differentiation of spread cells, whereas SRF inhibition did not. These observations suggest a potential role for actin polymerization and actomyosin contraction in the topography-induced differentiation of spread cells. STATEMENT OF SIGNIFICANCE: The epidermis is the outer covering of the skin. It is formed by layers of cells called keratinocytes. The basal cell layer contains stem cells, which divide to replace cells in the outermost layers that are lost through a process known as differentiation. In this manuscript we have developed surfaces that promote the differentiation of epidermal stem cells in order to understand the signals that control differentiation. The experimental tools we have developed have the potential to help us to devise new treatments that control diseases such as psoriasis and eczema in which epidermal stem cell proliferation and differentiation are disturbed.


Assuntos
Diferenciação Celular , Queratinócitos/metabolismo , Poliestirenos/química , Células-Tronco/metabolismo , Humanos , Queratinócitos/citologia , Células-Tronco/citologia , Propriedades de Superfície
8.
Stem Cell Reports ; 4(6): 984-94, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26004632

RESUMO

Osteoclasts (OCs) originate from the myeloid cell lineage, but the successive steps in their lineage commitment are ill-defined, especially in humans. To clarify OC origin, we sorted cell populations from pediatric bone marrow (BM) by flow cytometry and assessed their differentiation potential in vitro. Within the CD11b(-)CD34(+)c-KIT(+) BM cell population, OC-differentiation potential was restricted to FLT3(+) cells and enriched in an IL3 receptor (R)α(high) subset that constituted less than 0.5% of total BM. These IL3Rα(high) cells also generated macrophages (MΦs) and dendritic cells (DCs) but lacked granulocyte (GR)-differentiation potential, as demonstrated at the clonal level. The IL3Rα(low) subset was re-defined as common progenitor of GR, MΦ, OC, and DC (GMODP) and gave rise to the IL3Rα(high) subset that was identified as common progenitor of MΦ, OC, and DC (MODP). Unbiased transcriptome analysis of CD11b(-)CD34(+)c-KIT(+)FLT3(+) IL3Rα(low) and IL3Rα(high) subsets corroborated our definitions of the GMODP and MODP and their developmental relationship.


Assuntos
Células Dendríticas/citologia , Macrófagos/citologia , Osteoclastos/citologia , Antígenos CD34/metabolismo , Sequência de Bases , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Hematopoese , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Macrófagos/metabolismo , Dados de Sequência Molecular , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Transcriptoma , Tirosina Quinase 3 Semelhante a fms/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa