Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 158(4): 808-821, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126786

RESUMO

Behavioral state is known to influence interactions between thalamus and cortex, which are important for sensation, action, and cognition. The thalamic reticular nucleus (TRN) is hypothesized to regulate thalamo-cortical interactions, but the underlying functional architecture of this process and its state dependence are unknown. By combining the first TRN ensemble recording with psychophysics and connectivity-based optogenetic tagging, we found reticular circuits to be composed of distinct subnetworks. While activity of limbic-projecting TRN neurons positively correlates with arousal, sensory-projecting neurons participate in spindles and show elevated synchrony by slow waves during sleep. Sensory-projecting neurons are suppressed by attentional states, demonstrating that their gating of thalamo-cortical interactions is matched to behavioral state. Bidirectional manipulation of attentional performance was achieved through subnetwork-specific optogenetic stimulation. Together, our findings provide evidence for differential inhibition of thalamic nuclei across brain states, where the TRN separately controls external sensory and internal limbic processing facilitating normal cognitive function. PAPERFLICK:


Assuntos
Cognição , Núcleos Talâmicos/fisiologia , Animais , Atenção , Comportamento Animal , Sistema Límbico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Percepção Visual
2.
PLoS Biol ; 20(3): e3001612, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358176

RESUMO

Brain functions rely on the communication network formed by axonal fibers. However, the number of axons connecting different brain regions is unknown. A study in PLoS Biology addresses this question and finds that most areas of the human cerebral cortex are linked by an astoundingly small number of fibers.


Assuntos
Axônios , Encéfalo , Córtex Cerebral , Humanos
3.
PLoS Biol ; 18(2): e3000639, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32106269

RESUMO

Studies on the thalamus have mostly focused on sensory relay nuclei, but the organization of pathways associated with emotions is not well understood. We addressed this issue by testing the hypothesis that the primate amygdala acts, in part, like a sensory structure for the affective import of stimuli and conveys this information to the mediodorsal thalamic nucleus, magnocellular part (MDmc). We found that primate sensory cortices innervate amygdalar sites that project to the MDmc, which projects to the orbitofrontal cortex. As in sensory thalamic systems, large amygdalar terminals innervated excitatory relay and inhibitory neurons in the MDmc that facilitate faithful transmission to the cortex. The amygdala, however, uniquely innervated a few MDmc neurons by surrounding and isolating large segments of their proximal dendrites, as revealed by three-dimensional high-resolution reconstruction. Physiologic studies have shown that large axon terminals are found in pathways issued from motor systems that innervate other brain centers to help distinguish self-initiated from other movements. By analogy, the amygdalar pathway to the MDmc may convey signals forwarded to the orbitofrontal cortex to monitor and update the status of the environment in processes deranged in schizophrenia, resulting in attribution of thoughts and actions to external sources.


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Tonsila do Cerebelo/citologia , Animais , Dendritos , Feminino , Macaca mulatta , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Vias Neurais , Neurônios , Córtex Pré-Frontal/fisiologia , Terminações Pré-Sinápticas , Tálamo/citologia , Tálamo/fisiologia
4.
Eur J Neurosci ; 56(3): 4246-4265, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35701859

RESUMO

While atypical sensory perception is reported among individuals with autism spectrum disorder (ASD), the underlying neural mechanisms of autism that give rise to disruptions in sensory perception remain unclear. We developed a neural model with key physiological, functional and neuroanatomical parameters to investigate mechanisms underlying the range of representations of visual illusions related to orientation perception in typically developed subjects compared to individuals with ASD. Our results showed that two theorized autistic traits, excitation/inhibition imbalance and weakening of top-down modulation, could be potential candidates for reduced susceptibility to some visual illusions. Parametric correlation between cortical suppression, balance of excitation/inhibition, feedback from higher visual areas on one hand and susceptibility to a class of visual illusions related to orientation perception on the other hand provide the opportunity to investigate the contribution and complex interactions of distinct sensory processing mechanisms in ASD. The novel approach used in this study can be used to link behavioural, functional and neuropathological studies; estimate and predict perceptual and cognitive heterogeneity in ASD; and form a basis for the development of novel diagnostics and therapeutics.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ilusões , Humanos , Ilusões/fisiologia , Percepção Visual/fisiologia
5.
PLoS Biol ; 17(5): e3000259, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31075099

RESUMO

Hypotheses and theoretical frameworks are needed to organize and interpret the wealth of data on the organization of cortical networks in humans and animals in the light of development, evolution, and selective vulnerability to pathology. Goulas and colleagues compared several hypotheses of cortical network organization in 4 mammalian species and conclude that (1) the laminar pattern of cortico-cortical connections is better predicted by the Structural Model, which relates cytoarchitectonic differences of cortical areas to their interconnectedness, and (2) the existence of cortico-cortical connections is related to cytoarchitectonic differences and the physical distance between cortical areas. The predictions of the Structural Model can be applied to the human cortex, in which invasive studies are precluded. Goulas and colleagues advance interesting questions regarding the emergence of cortical structure and networks in development and evolution. Validated theories of cortical structure, development, and function can guide studies of cortical networks likely affected in neurodevelopmental disorders.


Assuntos
Conectoma , Animais , Córtex Cerebral , Humanos , Mamíferos , Organizações
6.
PLoS Biol ; 16(2): e2004559, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29401206

RESUMO

Noninvasive imaging and tractography methods have yielded information on broad communication networks but lack resolution to delineate intralaminar cortical and subcortical pathways in humans. An important unanswered question is whether we can use the wealth of precise information on pathways from monkeys to understand connections in humans. We addressed this question within a theoretical framework of systematic cortical variation and used identical high-resolution methods to compare the architecture of cortical gray matter and the white matter beneath, which gives rise to short- and long-distance pathways in humans and rhesus monkeys. We used the prefrontal cortex as a model system because of its key role in attention, emotions, and executive function, which are processes often affected in brain diseases. We found striking parallels and consistent trends in the gray and white matter architecture in humans and monkeys and between the architecture and actual connections mapped with neural tracers in rhesus monkeys and, by extension, in humans. Using the novel architectonic portrait as a base, we found significant changes in pathways between nearby prefrontal and distant areas in autism. Our findings reveal that a theoretical framework allows study of normal neural communication in humans at high resolution and specific disruptions in diverse psychiatric and neurodegenerative diseases.


Assuntos
Transtorno Autístico/patologia , Mapeamento Encefálico , Substância Cinzenta/patologia , Córtex Pré-Frontal/patologia , Substância Branca/patologia , Animais , Axônios , Comunicação Celular , Feminino , Humanos , Macaca mulatta , Masculino , Rede Nervosa , Especificidade da Espécie
7.
J Neurosci ; 37(20): 5051-5064, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28411274

RESUMO

The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive-emotional functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei, poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders.SIGNIFICANCE STATEMENT The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may help modulate autonomic function. By contrast, the anterior cingulate cortex innervates other amygdalar parts, activating circuits to help avoid danger. Most IM neurons in primates label for the protein DARPP-32, known to be activated or inhibited based on the level of dopamine. Stress markedly increases dopamine release and inhibits IM neurons, compromises prefrontal control of the amygdala, and sets off a general alarm system as seen in affective disorders, such as chronic anxiety and post-traumatic stress disorder.


Assuntos
Tonsila do Cerebelo/citologia , Giro do Cíngulo/fisiologia , Rede Nervosa/citologia , Inibição Neural , Córtex Pré-Frontal/citologia , Tonsila do Cerebelo/fisiologia , Animais , Nível de Alerta/fisiologia , Conectoma/métodos , Emoções/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Macaca mulatta , Masculino , Rede Nervosa/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia
8.
Acta Neuropathol ; 136(5): 759-778, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30191402

RESUMO

Autism has been linked with the changes in brain connectivity that disrupt neural communication, especially involving frontal networks. Pathological changes in white matter are evident in adults with autism, particularly affecting axons below the anterior cingulate cortices (ACC). It is still unknown whether axon pathology appears early or late in development and whether it changes or not from childhood through adulthood. To address these questions, we examined typical and pathological development of about 1 million axons in post-mortem brains of children, adolescents, and adults with and without autism (ages 3-67 years). We used high-resolution microscopy to systematically sample and study quantitatively the fine structure of myelinated axons in the white matter below ACC. We provide novel evidence of changes in the density, size and trajectories of ACC axons in typical postnatal development from childhood through adulthood. Against the normal profile of axon development, our data revealed lower density of myelinated axons that connect ACC with neighboring cortices in children with autism. In the course of development the proportion of thin axons, which form short-range pathways, increased significantly in individuals with autism, but remained flat in controls. In contrast, the relative proportion of thick axons, which form long-range pathways, increased from childhood to adulthood in the control group, but decreased in autism. Our findings provide a timeline for profound changes in axon density and thickness below ACC that affect axon physiology in a direction suggesting bias in short over distant neural communication in autism. Importantly, measures of axon density, myelination, and orientation provide white matter anisotropy/diffusivity estimates at the level of single axons. The structural template established can be used to compare with measures obtained from imaging in living subjects, and guide analysis of functional and structural imaging data from humans for comparison with pathological states.


Assuntos
Transtorno Autístico/patologia , Giro do Cíngulo/crescimento & desenvolvimento , Giro do Cíngulo/patologia , Rede Nervosa/patologia , Adolescente , Adulto , Idoso , Autopsia , Axônios/patologia , Axônios/ultraestrutura , Criança , Pré-Escolar , Feminino , Giro do Cíngulo/ultraestrutura , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/ultraestrutura , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/patologia , Neurônios/ultraestrutura , Substância Branca/patologia , Substância Branca/ultraestrutura , Adulto Jovem
9.
Eur J Neurosci ; 46(8): 2392-2405, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28921934

RESUMO

Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases.


Assuntos
Plasticidade Neuronal , Neurônios/metabolismo , Córtex Pré-Frontal/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Sistema Límbico/citologia , Sistema Límbico/fisiologia , Macaca mulatta , Bainha de Mielina/metabolismo , Neurônios/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia
10.
PLoS Comput Biol ; 12(2): e1004722, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26828203

RESUMO

In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Biologia Computacional , Simulação por Computador , Humanos
11.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746103

RESUMO

Connections in the cortex of diverse mammalian species are predicted reliably by the Structural Model for direction of pathways and signal processing (reviewed in 1,2). The model is rooted in the universal principle of cortical systematic variation in laminar structure and has been supported widely for connection patterns in animals but has not yet been tested for humans. Here, in postmortem brains of individuals neuropathologically diagnosed with chronic traumatic encephalopathy (CTE) we studied whether the hyperphosphorylated tau (p-tau) pathology parallels connection sequence in time by circuit mechanisms. CTE is a progressive p-tau pathology that begins focally in perivascular sites in sulcal depths of the neocortex (stages I-II) and later involves the medial temporal lobe (MTL) in stages III-IV. We provide novel quantitative evidence that the p-tau pathology in MTL A28 and nearby sites in CTE stage III closely follows the graded laminar patterns seen in homologous cortico-cortical connections in non-human primates. The Structural Model successfully predicted the laminar distribution of the p-tau neurofibrillary tangles and neurites and their density, based on the relative laminar (dis)similarity between the cortical origin (seed) and each connection site. The findings were validated for generalizability by a computational progression model. By contrast, the early focal perivascular pathology in the sulcal depths followed local columnar connectivity rules. These findings support the general applicability of a theoretical model to unravel the direction and progression of p-tau pathology in human neurodegeneration via a cortico-cortical mechanism. Cortical pathways converging on medial MTL help explain the progressive spread of p-tau pathology from focal cortical sites in early CTE to widespread lateral MTL areas and beyond in later disease stages.

12.
J Neurosci ; 32(15): 5338-50, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496579

RESUMO

How do emotional events readily capture our attention? To address this question we used neural tracers to label pathways linking areas involved in emotional and attentional processes in the primate brain (Macaca mulatta). We report that a novel pathway from the amygdala, the brain's emotional center, targets the inhibitory thalamic reticular nucleus (TRN), a key node in the brain's attentional network. The amygdalar pathway formed unusual synapses close to cell bodies of TRN neurons and had more large and efficient terminals than pathways from the orbitofrontal cortex and the thalamic mediodorsal nucleus, which similarly innervated extensive TRN sites. The robust amygdalar pathway provides a mechanism for rapid shifting of attention to emotional stimuli. Acting synergistically, pathways from the amygdala and orbitofrontal cortex provide a circuit for purposeful assessment of emotional stimuli. The different pathways to TRN suggest distinct mechanisms of attention to external and internal stimuli that may be differentially disrupted in anxiety and mood disorders and may be selectively targeted for therapeutic interventions.


Assuntos
Atenção/fisiologia , Emoções/fisiologia , Vias Neurais/fisiologia , Núcleos Talâmicos/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Feminino , Lobo Frontal/citologia , Lobo Frontal/fisiologia , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Microscopia Confocal , Microscopia Eletrônica , Terminações Pré-Sinápticas/fisiologia
13.
Netw Neurosci ; 7(2): 743-768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397882

RESUMO

Sleep spindles are associated with the beginning of deep sleep and memory consolidation and are disrupted in schizophrenia and autism. In primates, distinct core and matrix thalamocortical (TC) circuits regulate sleep spindle activity through communications that are filtered by the inhibitory thalamic reticular nucleus (TRN); however, little is known about typical TC network interactions and the mechanisms that are disrupted in brain disorders. We developed a primate-specific, circuit-based TC computational model with distinct core and matrix loops that can simulate sleep spindles. We implemented novel multilevel cortical and thalamic mixing, and included local thalamic inhibitory interneurons, and direct layer 5 projections of variable density to TRN and thalamus to investigate the functional consequences of different ratios of core and matrix node connectivity contribution to spindle dynamics. Our simulations showed that spindle power in primates can be modulated based on the level of cortical feedback, thalamic inhibition, and engagement of model core versus matrix, with the latter having a greater role in spindle dynamics. The study of the distinct spatial and temporal dynamics of core-, matrix-, and mix-generated sleep spindles establishes a framework to study disruption of TC circuit balance underlying deficits in sleep and attentional gating seen in autism and schizophrenia.

14.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162902

RESUMO

The strength of certain visual illusions is weakened in individuals with schizophrenia. Such phenomena have been interpreted as the impaired integration of inhibitory and excitatory neural responses, and impaired top-down feedback mechanisms. To investigate whether and how these factors influence the perceived illusions in individuals with schizophrenia, we propose a two-layer network that can model visual receptive fields (RFs), their inhibitory and excitatory subfields, and the top-down feedback. Our neural model suggests that illusion perception changes in individuals with schizophrenia can be influenced by altered top-down mechanisms and the organization of the on-center off-surround receptive fields. Alteration of the RF inhibitory surround and/or the excitatory center can replicate the difference of illusion precepts between individuals with schizophrenia and normal controls. The results show that the simulated top-down feedback modulation enlarges the difference of the model illusion representations, replicating the difference between the two groups. We propose that the heterogeneity of visual and in general sensory processing in schizophrenia can be largely explained by the degree of top-down feedback reduction, emphasizing the critical role of top-down feedback in illusion perception, and to a lesser extent on the imbalance of excitation/inhibition. Our neural model provides a mechanistic explanation for the modulated visual percepts in schizophrenia with findings that can explain a broad range of visual perceptual observations in previous studies. The two-layer motif of the current model provides a general framework that can be tailored to investigate subcortico-cortical (such as thalamocortical) and cortico-cortical networks, bridging neurobiological changes in schizophrenia and perceptual processing.

15.
Front Psychiatry ; 14: 1199690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900297

RESUMO

Introduction: The strength of certain visual illusions, including contrast-contrast and apparent motion, is weakened in individuals with schizophrenia. Such phenomena have been interpreted as the impaired integration of inhibitory and excitatory neural responses, and impaired top-down feedback mechanisms. Methods: To investigate whether and how these factors influence the perceived contrast-contrast and apparent motion illusions in individuals with schizophrenia, we propose a two-layer network, with top-down feedback from layer 2 to layer 1 that can model visual receptive fields (RFs) and their inhibitory and excitatory subfields. Results: Our neural model suggests that illusion perception changes in individuals with schizophrenia can be influenced by altered top-down mechanisms and the organization of the on-center off-surround receptive fields. Alteration of the RF inhibitory surround and/or the excitatory center can replicate the difference of illusion precepts between individuals with schizophrenia within certain clinical states and normal controls. The results show that the simulated top-down feedback modulation enlarges the difference of the model illusion representations, replicating the difference between the two groups. Discussion: We propose that the heterogeneity of visual and in general sensory processing in certain clinical states of schizophrenia can be largely explained by the degree of top-down feedback reduction, emphasizing the critical role of top-down feedback in illusion perception, and to a lesser extent on the imbalance of excitation/inhibition. Our neural model provides a mechanistic explanation for the modulated visual percepts of contrast-contrast and apparent motion in schizophrenia with findings that can explain a broad range of visual perceptual observations in previous studies. The two-layer motif of the current model provides a general framework that can be tailored to investigate subcortico-cortical (such as thalamocortical) and cortico-cortical networks, bridging neurobiological changes in schizophrenia and perceptual processing.

16.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37904992

RESUMO

Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.

17.
Brain Struct Funct ; 228(5): 1069-1093, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35962240

RESUMO

Sixty years ago, Friedrich Sanides traced the origin of the tangential expansion of the primate neocortex to two ancestral anlagen in the allocortex of reptiles and mammals, and proposed the Hypothesis on the Dual Origin of the Neocortex. According to Sanides, paraolfactory and parahippocampal gradients of laminar elaboration expanded in evolution by addition of successive concentric rings of gradually different cortical types inside the allocortical ring. Rodents had fewer rings and primates had more rings in the inner part of the cortex. In the present article, we perform cortical type analysis of the neocortex of adult rats, Rhesus macaques, and humans to propose hypotheses on homology of cortical areas applying the principles of the Hypothesis on the Dual Origin of the Neocortex. We show that areas in the outer rings of the neocortex have comparable laminar elaboration in rats and primates, while most 6-layer eulaminate areas in the innermost rings of primate neocortex lack homologous counterparts in rats. We also represent the topological distribution of cortical types in simplified flat maps of the cerebral cortex of monotremes, rats, and primates. Finally, we propose an elaboration of the Hypothesis on the Dual Origin of the Neocortex in the context of modern studies of pallial patterning that integrates the specification of pallial sectors in development of vertebrate embryos. The updated version of the hypothesis of Sanides provides explanation for the emergence of cortical hierarchies in mammals and will guide future research in the phylogenetic origin of neocortical areas.


Assuntos
Neocórtex , Humanos , Ratos , Animais , Filogenia , Macaca mulatta , Evolução Biológica , Primatas , Mamíferos
18.
J Comp Neurol ; 531(18): 1963-1986, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919833

RESUMO

The entorhinal cortex (EC, A28) is linked through reciprocal pathways with nearby perirhinal and visual, auditory, and multimodal association cortices in the temporal lobe, in pathways associated with the flow of information for memory processing. The density and laminar organization of these pathways is not well understood in primates. We studied interconnections within the ventral temporal lobe in young adult rhesus monkeys of both sexes with the aid of neural tracers injected in temporal areas (Ts1, Ts2, TE1, area 36, temporal polar area TPro, and area 28) to determine the density and laminar distribution of projection neurons within the temporal lobe. These temporal areas can be categorized into three different cortical types based on their laminar architecture: the sensory association areas Ts1, Ts2, and TE1 have six layers (eulaminate); the perirhinal limbic areas TPro and area 36 have an incipient layer IV (dysgranular); and area 28 lacks layer IV (agranular). We found that (1) temporal areas that are similar in laminar architecture by cortical type are strongly interconnected, and (2) the laminar pattern of connections is dependent on the difference in cortical laminar structure between linked areas. Thus, agranular A28 is more strongly connected with other agranular/dysgranular areas than with eulaminate cortices. Further, A28 predominantly projected via feedback-like pathways that originated in the deep layers, and received feedforward-like projections from areas of greater laminar differentiation, which emanated from the upper layers. Our results are consistent with the Structural Model, which relates the density and laminar distribution of connections to the relationship of the laminar structure between the linked areas. These connections were viewed in the context of the inhibitory microenvironment of A28, which is the key recipient of pathways from the cortex and of the output of hippocampus. Our findings revealed a higher population of calretinin (CR)-expressing neurons in EC, with a significantly higher density in its lateral division. Medial EC had a higher density of CR neurons in the deep layers, particularly in layer Va. In contrast, parvalbumin (PV) neurons were more densely distributed in the deep layers of the lateral subdivisions of rostral EC, especially in layer Va, whereas the densities of calbindin (CB) neurons in the medial and lateral EC were comparable in all layers, except for layer IIIa, in which medial EC had a higher CB population than the lateral. The pattern of connections in the inhibitory microenvironment of EC, which sends and receives input from the hippocampus, may shed light on signal propagation in this network associated with diverse aspects of memory, and disruptions in neurologic and psychiatric diseases that affect this region.


Assuntos
Córtex Cerebral , Lobo Temporal , Feminino , Animais , Masculino , Macaca mulatta , Vias Neurais/fisiologia , Hipocampo/fisiologia , Córtex Entorrinal , Calbindinas
19.
Front Syst Neurosci ; 16: 921468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203745

RESUMO

The idea of columns as an organizing cortical unit emerged from physiologic studies in the sensory systems. Connectional studies and molecular markers pointed to widespread presence of modular label that necessitated revision of the classical concept of columns. The general principle of cortical systematic variation in laminar structure is at the core of cortical organization. Systematic variation can be traced to the phylogenetically ancient limbic cortices, which have the simplest laminar structure, and continues through eulaminate cortices that show sequential elaboration of their six layers. Connections are governed by relational rules, whereby columns or modules with a vertical organization represent the feedforward mode of communication from earlier- to later processing cortices. Conversely, feedback connections are laminar-based and connect later- with earlier processing areas; both patterns are established in development. Based on studies in primates, the columnar/modular pattern of communication appears to be newer in evolution, while the broadly based laminar pattern represents an older system. The graded variation of cortices entails a rich variety of patterns of connections into modules, layers, and mixed arrangements as the laminar and modular patterns of communication intersect in the cortex. This framework suggests an ordered architecture poised to facilitate seamless recruitment of areas in behavior, in patterns that are affected in diseases of developmental origin.

20.
Front Neuroanat ; 16: 897237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157324

RESUMO

High-level characterizations of the primate cerebral cortex sit between two extremes: on one end the cortical mantle is seen as a mosaic of structurally and functionally unique areas, and on the other it is seen as a uniform six-layered structure in which functional differences are defined solely by extrinsic connections. Neither of these extremes captures the crucial neuroanatomical finding: that the cortex exhibits systematic gradations in architectonic structure. These gradations have been shown to predict cortico-cortical connectivity, which in turn suggests powerful ways to ground connectomics in anatomical structure, and by extension cortical function. A challenge to widespread use of this concept is the labor-intensive and invasive nature of histological staining, which is the primary means of recognizing anatomical gradations. Here we show that a novel computational analysis technique can provide a coarse-grained picture of cortical variation. For each of 78 cortical areas spanning the entire cortical mantle of the rhesus macaque, we created a high dimensional set of anatomical features derived from captured images of cortical tissue stained for myelin and SMI-32. The method involved semi-automated de-noising of images, and enabled comparison of brain areas without hand-labeling of features such as layer boundaries. We applied multidimensional scaling (MDS) to the dataset to visualize similarity among cortical areas. This analysis shows a systematic variation between weakly laminated (limbic) cortices and sharply laminated (eulaminate) cortices. We call this smooth continuum the "cortical spectrum". We also show that this spectrum is visible within subsystems of the cortex: the occipital, parietal, temporal, motor, prefrontal, and insular cortices. We compared the MDS-derived spectrum with a spectrum produced using T1- and T2-weighted magnetic resonance imaging (MRI) data derived from macaque, and found close agreement of the two coarse-graining methods. This suggests that T1w/T2w data, routinely obtained in human MRI studies, can serve as an effective proxy for data derived from high-resolution histological methods. More generally, this approach shows that the cortical spectrum is robust to the specific method used to compare cortical areas, and is therefore a powerful tool to understand the principles of organization of the primate cortex.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa