Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(5): 908-927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409439

RESUMO

AIMS/HYPOTHESIS: The proinflammatory cytokines IFN-α, IFN-γ, IL-1ß and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS: We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS: IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1ß and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION: These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Interferons/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/metabolismo , Ilhotas Pancreáticas/metabolismo
2.
Biochem Pharmacol ; 210: 115486, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893817

RESUMO

BACKGROUND: Exogenous glucocorticoids (CGs) possess relevant therapeutic effects but exert diabetogenic actions when in excess. Thus, ligands with potential therapeutic applications and fewer adverse effects are needed. To this, we analyzed whether mometasone furoate (MF), a CG expected to cause fewer side effects, given through systemic routes, could maintain the anti-inflammatory actions without relevant repercussions on metabolism. METHODS: The anti-inflammatory effect of MF was evaluated with both peritonitis and colitis models in rodents. Glucose and lipid metabolism were investigated in male and female rats treated daily with MF with different doses and routes of administration for seven days. The involvement of glucocorticoid receptor (GR) on MF actions was assessed in animals pretreated with mifepristone. Also, the potential reversibility of the adverse effects was assessed. Dexamethasone was used as a positive control. RESULTS: MF treatment resulted in glucose intolerance in male rats treated through intraperitoneal (ip) but not oral gavage route (og). In female rats, none of the routes led to glucose intolerance. MF treatment attenuated insulin sensitivity and increased pancreatic ß-cell mass, regardless of the sex and route of administration. MF treatment through og route did not result in dyslipidemia, as observed in rats treated through the ip route (both sexes). The anti-inflammatory and metabolic adverse effects of MF were GR-dependent, and metabolic outcomes altered by MF administration were reversible. CONCLUSION: MF maintains anti-inflammatory activity when administered by systemic routes and exerts less impact on metabolism when administered orally in male and female rats, effects that are GR-dependent and reversible. Category: Metabolic Disorders and Endocrinology.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Intolerância à Glucose , Pregnadienodiois , Masculino , Feminino , Ratos , Animais , Furoato de Mometasona , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/tratamento farmacológico , Pregnadienodiois/efeitos adversos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Glucocorticoides/toxicidade , Administração por Inalação
3.
Life Sci ; 277: 119509, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33865877

RESUMO

AIMS: Pregnancy is associated with the development of a transitory insulin resistance that parallels with the upregulation of pancreatic ß-cell function and mass. These metabolic adaptations guarantee the higher insulin demand, but there is no evidence of whether insulin clearance contributes to this process. Thus, we investigated some of the hepatic parameters related to insulin clearance during rat pregnancy. We also investigated some molecular parameters in the hypothalamus. MAIN METHODS: We evaluated the body mass and food intake, insulin sensitivity, ß- and α-cell masses, insulin clearance based on an exogenous insulin load, hepatic insulin-degrading enzyme (IDE) activity, and hepatic and hypothalamic protein content of IDE and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) in three periods of gestation in Wistar rats. KEY FINDINGS: In the first week of pregnancy, both insulin sensitivity and clearance increased, a pattern that inverted in the third week of gestation (reduced insulin sensitivity and clearance). Diminished insulin clearance was associated with lower hepatic IDE activity and higher pancreatic ß- and α-cell masses. No alteration in the hepatic IDE and CEACAM protein content was observed throughout pregnancy, but hypothalamic IDE protein content was significantly reduced in the late gestation period. SIGNIFICANCE: In conclusion, elevated insulin demand in the late period of gestation occurs not only as a result of increased ß-cell mass and function but also by a potential reduction in hepatic insulin clearance. Knowing this physiological process may be valuable when considering gestational diabetes mellitus results from a failure in insulin supply during pregnancy.


Assuntos
Células Secretoras de Glucagon/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Insulisina/metabolismo , Animais , Glicemia/metabolismo , Tamanho Celular , Diabetes Gestacional/fisiopatologia , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa