Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10729-10739, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829283

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been detected in an array of environmental media due to their ubiquitous use in industrial and consumer products as well as potential release from fluorochemical manufacturing facilities. During their manufacture, many fluorotelomer (FT) facilities rely on neutral intermediates in polymer production including the FT-alcohols (FTOHs). These PFAS are known to transform to the terminal acids (perfluoro carboxylic acids; PFCAs) at rates that vary with environmental conditions. In the current study on soils from a FT facility, we employed gas chromatography coupled with conventional- and high-resolution mass spectrometry (GC-MS and GC-HRMS) to investigate the profile of these precursor compounds, the intermediary secondary alcohols (sFTOHs), FT-acrylates (FTAcr), and FT-acetates (FTAce) in soils around the former FT-production facility. Of these precursors, the general trend in detection intensity was [FTOHs] > [sFTOHs] > [FTAcrs], while for the FTOHs, homologue intensities generally were [12:2 FTOH] > [14:2 FTOH] > [16:2 FTOH] > [10:2 FTOH] > [18:2 FTOH] > [20:2 FTOH] > [8:2 FTOH] ∼ [6:2 FTOH]. The corresponding terminal acids were also detected in all soil samples and positively correlated with the precursor concentrations. GC-HRMS confirmed the presence of industrial manufacturing byproducts such as FT-ethers and FT-esters and aided in the tentative identification of previously unreported dimers and other compounds. The application of GC-HRMS to the measurement and identification of precursor PFAS is in its infancy, but the methodologies described here will help refine its use in tentatively identifying these compounds in the environment.


Assuntos
Fluorocarbonos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Solo/química , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas , Monitoramento Ambiental , Instalações Industriais e de Manufatura
2.
Ground Water Monit Remediat ; 44(2): 101-117, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38846907

RESUMO

Understanding vapor intrusion (VI) temporal variability is key for the design of sampling strategies intended to assess reasonable maximum exposure of indoor air concentrations of volatile organic compounds (VOCs) as well as risk evaluation and mitigation planning. VI temporal variability has previously been shown to be dependent on the complex interactions of multiple independent variables-meteorological, hydrogeological, and human behavioral. Several meteorological variables, including barometric pressure, wind speed, and rainfall, are linked during tropical and extratropical storm events. High-frequency meteorological and indoor VOC data from a series of seven tropical storms and four extratropical storms were collected at a single industrial building with multiple heating, ventilation, and air conditioning (HVAC) zones. The storms and sampling zones showed a variety of effects on trichloroethylene (TCE) concentrations in indoor air. In one zone (supply room), increases in TCE concentrations often, but not always, closely coincided with decreasing barometric pressure, sustained wind speeds over 32 km/h (20 mph), and differential pressures indicating subslab to indoor flow. A second zone, in a restroom, did not show a consistent pattern of temporal correlation between meteorological factors and indoor air concentrations. While peak indoor air concentrations may be associated with the passage of cyclonic storms at some sampling locations, this does not appear to be generalizable to all sampling locations. The observed increase in indoor air concentration potentially attributable to these storms is typically less than an order of magnitude and the duration ranges from a day to a week.

3.
Inorg Chem ; 61(29): 11366-11376, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35820113

RESUMO

Square-planar PtII complexes are of interest as dopants for the emissive layer of organic light-emitting diodes. Herein, the photophysics of three Pt bipyridyl complexes with the strongly e- withdrawing, high-field, 3,3,3-trifluoropropynyl ligand has been investigated. One complex, (phbpy)PtC2CF3 (phbpy = 6-phenyl-2,2'-dipyridyl), has also been characterized by single-crystal X-ray diffraction. All complexes reported are emissive in both RT CH2Cl2 solution (ΦPL = 0.007 to 0.027) and PMMA film (ΦPL = 0.25 to 0.42). The trifluoropropynyl ligand elevates the energy of the MLCT and LL'CT states above that of the IL π-π* state, resulting in IL emission in all cases. The emission energies of the trifluoropropynyl compounds are also blue-shifted relative to the analogous pentafluorophenylethynyl compounds, suggesting that the trifluoropropynyl ligand is one of the most electron-withdrawing alkynyl ligands. Rate constants for radiative and nonradiative deactivation were determined from experimentally determined values of ΦPL and excited-state lifetimes in both solution and PMMA films. The increase in ΦPL upon incorporation into PMMA film (rigidoluminescence) results from a decrease in the rate constant for non-radiative relaxation. Experimental activation energies for excited-state decay in combination with TDDFT are consistent with the rigidoluminescence resulting from an increase in the energy of the non-emissive triplet metal-centered state. Two of the complexes investigated, (Ph2bpy)Pt(C2CF3)2 and (t-Bu2bpy)Pt(C2CF3)2, where t-Bu2bpy = 4,4'-di-tert-butyl-2,2'-dipyridyl and Ph2bpy = 4,4'-diphenyl-2,2'-dipyridyl, exhibit concentration-dependent excimer emission (orange) along with monomer emission (blue), enabling fine-tuning of the emission color. However, excimer emission was absent in cured PMMA films up to the solubility limit for solution processing of (Ph2bpy)Pt(C2CF3)2 in CH2Cl2, demonstrating the diffusional nature of excimer formation.

4.
Ground Water Monit Remediat ; 42(4): 43-53, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36960358

RESUMO

Soil vapor extraction (SVE) can be applied for remediation, and also as an alternative to sub-slab depressurization (SSD) for vapor intrusion (VI) mitigation. This study compares capital, operation, and treatment costs of SVE and SSD systems using data collected during a multi-year demonstration project conducted at eight buildings in an urban setting. The capital cost of the SVE system is substantially less than the estimated total capital cost of individual SSD systems. The SVE operating costs are higher, especially in the early operating years when it is being operated for mass removal and treatment. As a result, the cumulative SVE system cost rises above that of the SSD systems in the sixth year of operation. A significant portion of the operations and maintenance cost advantage of the SSD systems comes from the assumption that off-gas treatment is not required. Alternative cases show SVE costs are likely to be lower in scenarios where numerous small buildings requiring independent SSD systems overlie the SVE zone of influence. Conversely, SSD systems are less costly for cases with few small buildings overlying the SVE zone of influence. An additional benefit of SVE is continued mass removal. In a situation where an existing SVE can be repurposed for VI protection from residual volatile organic carbon (VOC) mass, the SVE cumulative costs over 30years can remain lower than the cost of installing and operating SSD systems in multiple buildings.

5.
Ground Water Monit Remediat ; 40(1): 74-85, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33414610

RESUMO

Soil vapor extraction (SVE) is effective for removing volatile organic compound (VOC) mass from the vadose zone and reducing the potential for vapor intrusion (VI) into overlying and surrounding buildings. However, the relationship between residual mass in the subsurface and VI is complex. Through a series of alternating extraction (SVE on) and rebound (SVE off) periods, this field study explored the relationship and aspects of SVE applicable to VI mitigation in a commercial/light-industrial setting. The primary objective was to determine if SVE could provide VI mitigation over a wide area encompassing multiple buildings, city streets, and subsurface utilities and eliminate the need for individual subslab depressurization systems. We determined that SVE effectively mitigates offsite VI by intercepting or diluting contaminant vapors that would otherwise enter buildings through foundation slabs. Data indicate a measurable (5 Pa) influence of SVE on subslab/indoor pressure differential may occur but is not essential for effective VI mitigation. Indoor air quality improvements were evident in buildings 100 to 200 feet away from SVE including those without a measurable reversal of differential pressure across the slab or substantial reductions in subslab VOC concentration. These cases also demonstrated mitigation effects across a four-lane avenue with subsurface utilities. These findings suggest that SVE affects distant VI entry points with little observable impact on differential pressures and without relying on subslab VOC concentration reductions.

6.
Ground Water Monit Remediat ; 39(1): 66-72, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32982132

RESUMO

Building pressure cycling (BPC) is becoming an increasingly important tool for studying vapor intrusion. BPC has been used to distinguish subslab and indoor sources of vapor intrusion as well as to define reasonable worst case volatile organic compound mass discharge into a structure. Analyses have been performed both semi-quantitatively with concentration trends and quantitatively with more rigorous flux calculation and source attribution methods. This paper reviews and compares the protocols and outcomes from multiple published applications of this technology to define the key variables that control performance. Common lessons learned are identified, including those that help define the range of building size and type to which BPC is applicable. Differences in test protocols are discussed, recognizing that the complexity of the test protocol required depends on the particular objectives of each project. Research gaps are identified and tabulated for future validation studies and applications.

7.
J Hazard Mater ; 464: 133025, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995636

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are used in various industrial products; however, they pose serious health risks. In this study, soil, soil gas, and groundwater samples were collected at a PFAS manufacturing facility in New Jersey, USA, to determine the presence and distribution of PFASs from the soil surface to groundwater and at various distances from the presumed source. Fluorotelomer alcohols (FTOHs) were detected in soil (< 0.26-36.15 ng/g) and soil gas (160-12,000 E µg/m3), while perfluorinated carboxylic acids (PFCAs) were found in soil (4.3-810 ng/g), soil gas (<0.10-180 µg/m3), and groundwater (37-49 µg/L). FTOH and PFCA concentrations decreased as the distance from the presumed source increased, suggesting that PFCAs are likely to migrate in groundwater, whereas FTOHs primarily move in the vapor phase. The presence of PFAS in the groundwater, soil, and soil gas samples indicate its potential for vapor intrusion; thus, some PFAS may contribute to indoor air inhalation exposure. To the best of our knowledge, this is the first report on the quantification of volatile PFAS in soil gas at a PFAS manufacturing facility.

8.
Soil Sediment Contam ; 26(3): 294-307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147454

RESUMO

Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated groundwater, to indoor air-exposure points. Therefore, contaminated matrices may include groundwater, soil, soil gas, and indoor air. VOC contaminants of concern typically include halogenated solvents such as trichloroethene, tetrachloroethene, and chloroform, as well as petroleum hydrocarbons, such as the aromatic VOCs benzene, toluene, and xylenes. Radon is a colorless radioactive gas that is released by radioactive decay of radionuclides in rock and soil that migrate into homes through VI in a similar fashion to VOCs. This project focused on the performance of permanent versus temporary sub-slab sampling ports for the determination of VI of halogenated VOCs and radon into an unoccupied house. VOC and radon concentrations measured simultaneously in soil gas using collocated temporary and permanent ports appeared to be independent of the type of port. The variability between collocated temporary and permanent ports was much less than the spatial variability between different locations within a single residential duplex. The agreement of the majority of VOC and radon concentrations, 0-36% relative percent difference, and 2-19% relative standard deviation respectively, of each sub-slab port (SSP) type was achieved even though the clay portion of the seal of the temporary ports was visibly desiccated and cracked. Post sampling leak test results suggested that the temporary SSP desiccation and cracking were not as detrimental to the port seal performance as would have been expected, this suggests that the Teflon tape portion of the seals served an important function. Post sampling leak tests are advisable (in addition to pre-sampling leak tests) when temporary ports are used to collect a time-integrated sample over a period of several hours. These results suggest that temporary sub-slab sampling ports can provide data equivalent to that collected from a permanent sub-slab sampling port. However, (1) only one type of seal material was tested in one location, (2) the seals were installed by experts with rigorous quality control, and; thus, (3) these results may not apply to all types of temporary seals and all building foundations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa