Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 31(5): 617-625, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181147

RESUMO

Mycopharmaceuticals from basidiomycetes represent a promising source of new antimicrobials to overcome the challenges of multidrug-resistant bacteria. Here we report for the first time the in vitro activity of aurisin A, a dimeric sesquiterpenoid isolated from wild bioluminescent basidiomycetes Neonothopanus nambi DSM 24013, against methicillin-resistant Staphylococcus aureus (MRSA). Aurisin A revealed strong anti-MRSA activity with minimum inhibitory concentration 7.81 µg/mL against ATCC 33591 and ATCC 43300 reference strains, and BD 16876 and BD 15358 clinical strains. Activity against the clinical strains is 10- to 40-fold higher than that of the antibiotic fusidic acid. Furthermore, aurisin A proved to be more potent (MIC 3.91 µg/mL) in inhibiting growth of vancomycin-intermediate S. aureus (VISA) ATCC 700699 and displayed a rapid time-dependent bactericidal activity against MRSA (complete killing within 1 h). Additionally, aurisin A and oxacillin combination displayed synergy with notable decrease in the MICs of both compounds against MRSA. Notable synergism was also observed in combinations with linezolid and fusidic acid. Our findings indicate that aurisin A is a promising candidate for developing therapeutic agents against multidrug-resistant S. aureus and warrants further investigation.

2.
Arch Microbiol ; 202(8): 2083-2092, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32494868

RESUMO

Chloramphenicol (CAP) and cyclo-(L-Val-L-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(L-Val-L-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(L-Val-L-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(L-Val-L-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(L-Val-L-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.


Assuntos
Cloranfenicol/farmacologia , Regulação para Baixo/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Streptomyces/química
3.
Microb Ecol ; 75(1): 88-103, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28642991

RESUMO

The extent to which distinct bacterial endophyte communities occur between different plant organs and species is poorly known and has implications for bioprospecting efforts. Using the V3 region of the bacterial 16S ribosomal RNA (rRNA) gene, we investigated the diversity patterns of bacterial endophyte communities of three rainforest plant species, comparing leaf, stem, and root endophytes plus rhizosphere soil community. There was extensive overlap in bacterial communities between plant organs, between replicate plants of the same species, between plant species, and between plant organ and rhizosphere soil, with no consistent clustering by compartment or host plant species. The non-metric multidimensional scaling (NMDS) analysis highlighted an extensively overlapping bacterial community structure, and the ß-nearest taxon index (ßNTI) analysis revealed dominance of stochastic processes in community assembly, suggesting that bacterial endophyte operational taxonomic units (OTUs) were randomly distributed among plant species and organs and rhizosphere soil. Percentage turnover of OTUs within pairs of samples was similar both for plant individuals of the same species and of different species at around 80-90%. Our results suggest that sampling extra individuals, extra plant organs, extra species, or use of rhizosphere soil, might be about equally effective for obtaining new OTUs for culture. These observations suggest that the plant endophyte community may be much more diverse, but less predictable, than would be expected from culturing efforts alone.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Filogenia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Plantas/classificação , RNA Ribossômico 16S/genética , Floresta Úmida , Rizosfera , Solo/química
4.
Future Microbiol ; 17: 683-699, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35414206

RESUMO

Alternative solutions are eminently needed to combat the escalating number of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriocins produced by lactic acid bacteria are promising candidates for next-generation antibiotics. Studies have found that these stable and nontoxic ribosomally synthesized antimicrobial peptides exhibit significant potency against other bacteria, including antibiotic-resistant strains. Here the authors review previous studies on bacteriocins that have been effectively employed to manage MRSA infections. The authors' review focuses on the beneficial traits of bacteriocins for further application as templates for the design of novel drugs. Treatments that combine bacteriocins with other antimicrobials to combat pervasive MRSA infections are also highlighted. In short, future studies should focus on the pharmacodynamics and pharmacokinetics of bacteriocins-antimicrobials to understand their interactions, as this aspect would likely determine their efficacy in MRSA inhibition.


Assuntos
Bacteriocinas , Lactobacillales , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Bacteriocinas/farmacologia
5.
Front Bioeng Biotechnol ; 9: 740722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712653

RESUMO

Endophytic actinobacteria offer great potential as a source of novel bioactive compounds. In order to investigate the potential for the production of secondary metabolites by endophytes, we recovered a filamentous microorgansism from the tree Antidesma neurocarpum Miq. After phenotypic analysis and whole genome sequencing we demonstrated that this organism, SUK42 was a member of the actinobacterial genus Kitasatospora. This strain has a small genome in comparison with other type strains of this genus and has lost metabolic pathways associated with Stress Response, Nitrogen Metabolism and Secondary Metabolism. Despite this SUK42 can grow well in a laboratory environment and encodes a core genome that is consistent with other members of the genus. Finally, in contrast to other members of Kitasatospora, SUK42 encodes saccharide secondary metabolite biosynthetic gene clusters, one of which with similarity to the acarviostatin cluster, the product of which displays α-amylase inhibitory activity. As extracts of the host plant demonstrate this inhibitory activity, it suggests that the potential medicinal properties of A. neurocarpum Miq might be provided by the endophytic partner and illustrate the potential for exploitation of endophytes for clinical or industrial uses.

6.
FEMS Microbiol Lett ; 274(1): 83-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17608698

RESUMO

Three novel endophytic streptomycetes have been isolated and characterized from plants with ethnobotanical uses on the Malay Peninsula including: Thottea grandiflora (family -Aristolochiaceae), Polyalthia spp. (family -Annonaceae), and Mapania sp. (family -Cyperaceae). Each isolate, as studied by scanning electron microscopy, has small hyphae, and produces typical barrel-shaped spores arising by hyphal fragmentation. Interestingly, although none has any detectable antibacterial killing properties, each has demonstrable killing activity against one or more pathogenic fungi including organisms such as Phytophthora erythroseptica, Pythium ultimum, Sclerotinia sclerotiorum, Mycosphaerella fijiensis and Rhizoctonia solani. Molecular biological studies on the rRNA gene sequence of each isolate revealed that it is distinct from all other genetic accessions of streptomyectes in GenBank, and each bears some genetic similarity to other streptomycetes. The bioactivity of each microbe was extractable in various organic solvents.


Assuntos
Actinomycetales/fisiologia , Aristolochiaceae/microbiologia , Cyperaceae/microbiologia , Polyalthia/microbiologia , Actinomycetales/isolamento & purificação , Actinomycetales/ultraestrutura , Aristolochiaceae/classificação , Bactérias/efeitos dos fármacos , Fatores Biológicos/farmacologia , Cyperaceae/classificação , Fungos/efeitos dos fármacos , Genes de RNAr , Hifas/ultraestrutura , Malásia , Testes de Sensibilidade Microbiana , Polyalthia/classificação
7.
Genom Data ; 14: 44-46, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28856101

RESUMO

Here we report the draft genome sequence of an endophytic Paenibacillus tyrfis strain isolated from the Universiti Kebangsaan Malaysia reserve forest, Malaysia. The genome size was approximately 8.04 Mb, and the assembly consisted of 107 scaffolds with 168 contigs, and had a G + C content of 53%. Phylogenetic analysis of strain SUK123 using the 16S rRNA gene revealed that it belonged to the family Paenibacillaceae with the highest similarity to Paenibacillus elgii SDT (99%). Whole genome comparison of SUK123 with related species using average nucleotide identity (ANI) analysis revealed a similarity of 98% to Paenibacillus tyrfis Mst1T, 94% to Paenibacillus elgii B69T, 91% to Paenibacillus ehimensis A2T, 68% to Paenibacillus polymyxa SC2T and 69% to Paenibacillus alvei DMS29T. The draft genome was deposited at the European Nucleotide Archive (PRJEB21373).

8.
Drug Des Devel Ther ; 10: 1817-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27330275

RESUMO

BACKGROUND: Zingiber spectabile, commonly known as Beehive Ginger, is used as an ethnobotanical plant in many countries as an appetizer or to treat stomachache, toothache, muscle sprain, and as a cure for swelling, sores and cuts. This is the first report of isolation of Streptomyces strain from the root of this plant. Strain Universiti Kebangsaan 25 (SUK 25) has a very high activity to produce secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA), which is associated with high morbidity and mortality rates due to acquired multidrug resistance genes and causes medication failure in some clinical cases worldwide. Phylogenetic analysis based on the 16S ribosomal RNA gene sequence exhibited that the most closely related strain was Streptomyces omiyaensis NBRC 13449T (99.0% similarity). AIM: This study was conducted to carry out the extraction, identification, and biological evaluation of active metabolites isolated from SUK 25 against three MRSA strains, namely, MRSA ATCC 43300, MRSA ATCC 33591, and MRSA ATCC 49476. MATERIALS AND METHODS: The production of secondary metabolites by this strain was optimized through Thronton's media. Isolation, purification, and identification of the bioactive compounds were carried out using reversed-phase high-performance liquid chromatography, high-resolution mass spectrometry, Fourier transform infrared, and one-dimensional and two-dimensional nuclear magnetic resonance. RESULTS: During screening procedure, SUK 25 exhibited good antimicrobial potential against several strains of MRSA. The best biological activity was shown from fraction number VII and its subfractions F2 and F3 with minimum inhibitory concentration values at 16 µg/mL and 8 µg/mL, respectively. These two subfractions were identified as diketopiperazine cyclo-(tryptophanyl-prolyl) and chloramphenicol. CONCLUSION: On the basis of obtained results, SUK 25 isolated from Z. spectabile can be regarded as a new valuable source to produce secondary metabolites against bacteria, especially MRSA.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cloranfenicol/isolamento & purificação , Cloranfenicol/farmacologia , RNA Ribossômico 16S/genética , Triptofano/análogos & derivados , Antibacterianos/química , Anti-Infecciosos/química , Cloranfenicol/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , RNA Ribossômico 16S/química , Triptofano/química , Triptofano/isolamento & purificação , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa