Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Comput Vis ; 85(3): 279-290, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20442792

RESUMO

We propose an integrated registration and clustering algorithm, called "consistency clustering", that automatically constructs a probabilistic white-matter atlas from a set of multi-subject diffusion weighted MR images. We formulate the atlas creation as a maximum likelihood problem which the proposed method solves using a generalized Expectation Maximization (EM) framework. Additionally, the algorithm employs an outlier rejection and denoising strategy to produce sharp probabilistic maps of certain bundles of interest. We test this algorithm on synthetic and real data, and evaluate its stability against initialization. We demonstrate labeling a novel subject using the resulting spatial atlas and evaluate the accuracy of this labeling. Consistency clustering is a viable tool for completely automatic white-matter atlas construction for sub-populations and the resulting atlas is potentially useful for making diffusion measurements in a common coordinate system to identify pathology related changes or developmental trends.

2.
Med Image Comput Comput Assist Interv ; 11(Pt 1): 279-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18979758

RESUMO

Several recent studies explored the use of unsupervised segmentation methods for segmenting thalamic nuclei from diffusion tensor images. These methods provide a plausible segmentation on individual subjects; however, they do not address the problem of consistently identifying the same functional areas in a population. The lack of correspondence between the segmented nuclei make it more difficult to use the results from the unsupervised segmentation tools for morphometry. In this paper we present a novel segmentation algorithm to automatically segment the gray matter nuclei while ensuring consistency between subjects in a population. This new algorithm, referred to as Consistency Clustering, finds correspondence between the nuclei as the segmentation is achieved through a single model for the whole population, similar to the brain atlases experts use to identify thalamic nuclei.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Núcleos Talâmicos/anatomia & histologia , Humanos , Aumento da Imagem/métodos , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-18051078

RESUMO

In this paper, we explore the use of fiber bundles extracted from diffusion MR images for a nonlinear registration algorithm. We employ a white matter atlas to automatically label major fiber bundles and to establish correspondence between subjects. We propose a polyaffine framework to calculate a smooth and invertible nonlinear warp field based on these correspondences, and derive an analytical solution for the reorientation of the tensor fields under the polyaffine transformation. We demonstrate our algorithm on a group of subjects and show that it performs comparable to a higher dimensional nonrigid registration algorithm.


Assuntos
Algoritmos , Inteligência Artificial , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Reconhecimento Automatizado de Padrão/métodos , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-17354847

RESUMO

Recent work shows that diffusion tensor imaging (DTI) can help resolving thalamic nuclei based on the characteristic fiber orientation of the corticothalamic/thalamocortical striations within each nucleus. In this paper we describe a novel segmentation method based on spectral clustering. We use Markovian relaxation to handle spatial information in a natural way, and we explicitly minimize the normalized cut criteria of the spectral clustering for a better optimization. Using this modified spectral clustering algorithm, we can resolve the organization of the thalamic nuclei into groups and subgroups solely based on the voxel affinity matrix, avoiding the need for explicitly defined cluster centers. The identification of nuclear subdivisions can facilitate localization of functional activation and pathology to individual nuclear subgroups.


Assuntos
Inteligência Artificial , Análise por Conglomerados , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Núcleos Talâmicos/anatomia & histologia , Algoritmos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa