Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15477, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726330

RESUMO

The consideration of human and environmental exposure to dendrimers, including cytotoxicity, acute toxicity, and cell and tissue accumulation, is essential due to their significant potential for various biomedical applications. This study aimed to evaluate the biodistribution and toxicity of a novel methoxyphenyl phosphonium carbosilane dendrimer, a potential mitochondria-targeting vector for cancer therapeutics, in 2D and 3D cancer cell cultures and zebrafish embryos. We assessed its cytotoxicity (via MTT, ATP, and Spheroid growth inhibition assays) and cellular biodistribution. The dendrimer cytotoxicity was higher in cancer cells, likely due to its specific targeting to the mitochondrial compartment. In vivo studies using zebrafish demonstrated dendrimer distribution within the vascular and gastrointestinal systems, indicating a biodistribution profile that may be beneficial for systemic therapeutic delivery strategies. The methoxyphenyl phosphonium carbosilane dendrimer shows promise for applications in cancer cell delivery, but additional studies are required to confirm these findings using alternative labelling methods and more physiologically relevant models. Our results contribute to the growing body of evidence supporting the potential of carbosilane dendrimers as vectors for cancer therapeutics.


Assuntos
Dendrímeros , Neoplasias , Humanos , Animais , Dendrímeros/toxicidade , Peixe-Zebra , Distribuição Tecidual , Neoplasias/tratamento farmacológico , Técnicas de Cultura de Células em Três Dimensões
2.
ACS Appl Nano Mater ; 5(12): 17956-17968, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36583119

RESUMO

Nanoscale cerium-bismuth oxides/oxynitrates were prepared by a scalable low-temperature method at ambient pressure using water as the sole solvent. Solid solutions were formed up to a 1:1 Ce/Bi molar ratio, while at higher doping levels, bismuth oxynitrate photocatalysts with a pronounced layered structure were formed. Bismuth caused significant changes in the structure and surface properties of nanoceria, such as the formation of defects, oxygen-containing surface groups, and Lewis and Brønsted acid sites. The prepared bifunctional adsorbents/photocatalysts were efficient in the removal of toxic organophosphate (methyl paraoxon) from water by reactive adsorption followed by photocatalytic decomposition of the parent compound and its degradation product (p-nitrophenol). Bi-doped ceria also effectively adsorbed and photodegraded the endocrine disruptors bisphenols A and S and outperformed pure ceria and the P25 photocatalyst in terms of efficiency, durability, and long-term stability. The very low toxicity of Bi-nanoceria to mammalian cells, aquatic organisms, and bacteria has been demonstrated by comprehensive in vivo/in vitro testing, which, in addition to its simple "green" synthesis, high activity, and durability, makes Bi-doped ceria promising for safe use in abatement of toxic chemicals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa