Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 385(6708): 517-521, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088605

RESUMO

Tropical glaciers have retreated over recent decades, but whether the magnitude of this retreat exceeds the bounds of Holocene fluctuations is unclear. We measured cosmogenic beryllium-10 and carbon-14 concentrations in recently exposed bedrock at the margin of four glaciers spanning the tropical Andes to reconstruct their past extents relative to today. Nuclide concentrations are near zero in almost all samples, suggesting that these locations were never exposed during the Holocene. Our data imply that many glaciers in the tropics are probably now smaller than they have been in at least 11,700 years, making the tropics the first large region where this milestone has been documented.

2.
Sci Adv ; 7(20)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33990323

RESUMO

Ice-sheet responses to climate warming and associated sea-level rise depend sensitively on the form of the slip law that relates drag at the beds of glaciers to their slip velocity and basal water pressure. Process-based models of glacier slip over idealized, hard (rigid) beds with water-filled cavities yield slip laws in which drag decreases with increasing slip velocity or water pressure (rate-weakening drag). We present results of a process-based, three-dimensional model of glacier slip applied to measured bed topographies. We find that consideration of actual glacier beds eliminates or makes insignificant rate-weakening drag, thereby uniting process-based models of slip with some ice-sheet model parameterizations. Computed slip laws have the same form as those indicated by experiments with ice dragged over deformable till, the other common bed condition. Thus, these results may point to a universal slip law that would simplify and improve estimations of glacier discharges to the oceans.

3.
Science ; 368(6486): 76-78, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241945

RESUMO

Slip of marine-terminating ice streams over beds of deformable till is responsible for most of the contribution of the West Antarctic Ice Sheet to sea level rise. Flow models of the ice sheet and till-bedded glaciers elsewhere require a law that relates slip resistance, slip velocity, and water pressure at the bed. We present results of experiments in which pressurized ice at its melting temperature is slid over a water-saturated till bed. Steady-state slip resistance increases with slip velocity owing to sliding of ice across the bed, but above a threshold velocity, till shears at its rate-independent Coulomb strength. These results motivate a generalized slip law for glacier-flow models that combines processes of hard-bedded sliding and bed deformation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa