Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(4): 2246-2253, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28164700

RESUMO

Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation.


Assuntos
Poluentes do Solo , Solo/química , Metais Pesados , Ácido Nítrico
2.
Environ Sci Technol ; 51(3): 1330-1339, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28102075

RESUMO

Insight in the molecular structure of humic acid (HA) and fulvic acid (FA) can contribute to identify relationships between their molecular properties, and further our quantitative abilities to model important organic matter functions such as metal complexation and association with mineral surfaces. Pyrolysis gas chromatography/mass spectrometry (Py-GC-MS) is used to compare the molecular composition of HA and FA. A systematic comparison was obtained by using samples from different environmental sources, including solid and aqueous samples from both natural and waste sources. The chemical signature of the pyrolysates was highly variable and no significant difference between HA and FA was found for major chemical groups, that is, carbohydrates, phenols, benzenes, and lignin phenols, together accounting for 62-96% of all quantified pyrolysis products. However, factor analysis showed that within each sample, FAs consistently differed from corresponding HAs in a larger contribution from mono- and polyaromatic hydrocarbons and heterocyclic hydrocarbons, together accounting for 3.9-44.5% of the quantified pyrolysis products. This consistent difference between FAs and corresponding HAs, suggests that their binding properties may, in addition to the carboxyl and phenolic groups, be influenced by the molecular architecture. Py-GC-MS may thus contribute to identify relationships between HA and FA binding- and molecular-properties.


Assuntos
Benzopiranos/química , Substâncias Húmicas , Meio Ambiente , Cromatografia Gasosa-Espectrometria de Massas , Lignina , Compostos Orgânicos
3.
Waste Manag ; 29(7): 2059-64, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19269157

RESUMO

The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of organic matter contributing to the release of DOC, HA and FA are, therefore, important for environmental risk assessment. In this study we have quantitatively measured the carbon speciation, and its relation with the leaching of Cu, in three fresh and carbonated MSWI bottom ash samples. Results show that up to only 25% of loss on ignition (LOI) consists of organic carbon (OC), while about 17% of OC in the three samples consists of HA and FA. Up to 50% of DOC in MSWI bottom ash leachates was identified as fulvic acid (FA). This value is substantially higher than previously estimated for these MSWI bottom ash samples and is consistent with the higher recovery of the new method that was applied. The results of this study imply that methods focusing on specific carbon fractions are more appropriate for assessment of environmentally relevant organic carbon species than the measurement of LOI.


Assuntos
Carbono/análise , Incineração , Compostos Orgânicos/análise , Resíduos/análise , Metais/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa