Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(48): e2212658119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409896

RESUMO

Protein glycosylation is a crucial mediator of biological functions and is tightly regulated in health and disease. However, interrogating complex protein glycoforms is challenging, as current lectin tools are limited by cross-reactivity while mass spectrometry typically requires biochemical purification and isolation of the target protein. Here, we describe a method to identify and characterize a class of nanobodies that can distinguish glycoforms without reactivity to off-target glycoproteins or glycans. We apply this technology to immunoglobulin G (IgG) Fc glycoforms and define nanobodies that specifically recognize either IgG lacking its core-fucose or IgG bearing terminal sialic acid residues. By adapting these tools to standard biochemical methods, we can clinically stratify dengue virus and SARS-CoV-2 infected individuals based on their IgG glycan profile, selectively disrupt IgG-Fcγ receptor binding both in vitro and in vivo, and interrogate the B cell receptor (BCR) glycan structure on living cells. Ultimately, we provide a strategy for the development of reagents to identify and manipulate IgG Fc glycoforms.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Imunoglobulina G/metabolismo , SARS-CoV-2 , Fragmentos Fc das Imunoglobulinas/metabolismo , Polissacarídeos/metabolismo
2.
J Proteome Res ; 22(4): 1138-1147, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36763792

RESUMO

Targeted quantification of proteins is a standard methodology with broad utility, but targeted quantification of glycoproteins has not reached its full potential. The lack of optimized workflows and isotopically labeled standards limits the acceptance of glycoproteomics quantification. In this work, we introduce an efficient and streamlined chemoenzymatic synthesis of a library of isotopically labeled glycopeptides of IgG1 which we use for quantification in an energy optimized LC-MS/MS-PRM workflow. Incorporation of the stable isotope labeled N-acetylglucosamine enables an efficient monitoring of all major fragment ions of the glycopeptides generated under the soft higher-energy C-trap dissociation (HCD) conditions, which reduces the coefficients of variability (CVs) of the quantification to 0.7-2.8%. Our results document, for the first time, that the workflow using a combination of stable isotope labeled standards with intrascan normalization enables quantification of the glycopeptides by an electron transfer dissociation (ETD) workflow, as well as the HCD workflow, with the highest sensitivity compared to traditional workflows. This was exemplified by a rapid quantification (13 min) of IgG1 Fc glycoforms from COVID-19 patients.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Espectrometria de Massas em Tandem/métodos , Glicopeptídeos , Cromatografia Líquida/métodos
3.
J Cell Sci ; 134(4)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468620

RESUMO

In order to produce proteins essential for their propagation, many pathogenic human viruses, including SARS-CoV-2, the causative agent of COVID-19 respiratory disease, commandeer host biosynthetic machineries and mechanisms. Three major structural proteins, the spike, envelope and membrane proteins, are amongst several SARS-CoV-2 components synthesised at the endoplasmic reticulum (ER) of infected human cells prior to the assembly of new viral particles. Hence, the inhibition of membrane protein synthesis at the ER is an attractive strategy for reducing the pathogenicity of SARS-CoV-2 and other obligate viral pathogens. Using an in vitro system, we demonstrate that the small molecule inhibitor ipomoeassin F (Ipom-F) potently blocks the Sec61-mediated ER membrane translocation and/or insertion of three therapeutic protein targets for SARS-CoV-2 infection; the viral spike and ORF8 proteins together with angiotensin-converting enzyme 2, the host cell plasma membrane receptor. Our findings highlight the potential for using ER protein translocation inhibitors such as Ipom-F as host-targeting, broad-spectrum antiviral agents.This article has an associated First Person interview with the first author of the paper.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoconjugados/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , Humanos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
4.
Anal Chem ; 95(27): 10145-10148, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37382290

RESUMO

Mass spectrometry (MS) can unlock crucial insights into the intricate world of glycosylation analysis. Despite its immense potential, the qualitative and quantitative analysis of isobaric glycopeptide structures remains one of the most daunting hurdles in the field of glycoproteomics. The ability to distinguish between these complex glycan structures poses a significant challenge, hindering our ability to accurately measure and understand the role of glycoproteins in biological systems. A few recent publications described the use of collision energy (CE) modulation to improve structural elucidation, especially for qualitative purposes. Different linkages of glycan units usually demonstrate different stabilities under CID/HCD fragmentation conditions. Fragmentation of the glycan moiety produces low molecular weight ions (oxonium ions) that can serve as a structure-specific signature for specific glycan moieties; however, the specificity of these fragments has never been examined closely. Here, we particularly focused on N-glycoproteomics analysis and investigated fragmentation specificity using synthetic stable isotope-labeled N-glycopeptide standards. These standards were isotopically labeled at the reducing terminal GlcNAc, which allowed us to resolve fragments produced by the oligomannose core moiety and fragments generated from outer antennary structures. Our research identified the potential for false-positive structure assignments due to the occurrence of "Ghost" fragments resulting from single glyco unit rearrangement or mannose core fragmentation within the collision cell. To mitigate this issue, we have established a minimal intensity threshold for these fragments to prevent misidentification of structure-specific fragments in glycoproteomics analysis. Our findings provide a crucial step forward in the quest for more accurate and reliable glycoproteomics measurements.


Assuntos
Glicoproteínas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Glicoproteínas/química , Polissacarídeos/química , Glicopeptídeos/análise , Íons/química
5.
Bioconjug Chem ; 34(2): 392-404, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642983

RESUMO

Multivalent interactions are a key characteristic of protein-carbohydrate recognition. Phospholipid-based liposomes have been explored as a popular platform for multivalent presentation of glycans, but this platform has been plagued by the instability of typical liposomal formulations in biological media. We report here the exploitation of catanionic vesicles as a stable lipid-based nanoparticle scaffold for displaying large natural N-glycans as multivalent ligands. Hydrophobic insertion of lipidated N-glycans into the catanionic vesicle bilayer was optimized to allow for high-density display of structurally diverse N-glycans on the outer membrane leaflet. In an enzyme-linked competitive lectin-binding assay, the N-glycan-coated vesicles demonstrated a clear clustering glycoside effect, with significantly enhanced affinity for the corresponding lectins including Sambucus nigra agglutinin (SNA), concanavalin A (ConA), and human galectin-3, in comparison with their respective natural N-glycan ligands. Our results showed that relatively low density of high-mannose and sialylated complex type N-glycans gave the maximal clustering effect for binding to ConA and SNA, respectively, while relatively high-density display of the asialylated complex type N-glycan provided maximal clustering effects for binding to human galectin 3. Moreover, we also observed a macromolecular crowding effect on the binding of ConA to high-mannose N-glycans when catanionic vesicles bearing mixed high-mannose and complex-type N-glycans were used. The N-glycan-coated catanionic vesicles are stable and easy to formulate with varied density of ligands, which could serve as a feasible vehicle for drug delivery and as potent inhibitors for intervening protein-carbohydrate interactions implicated in disease.


Assuntos
Carboidratos , Manose , Humanos , Ligantes , Carboidratos/química , Polissacarídeos/química , Proteínas
6.
Bioconjug Chem ; 33(7): 1350-1362, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35687881

RESUMO

N-Glycosylation plays an important role in many biological recognition processes. However, very few N-glycan-specific antibodies are available for functional studies and potentially for therapeutic development. In this study, we sought to synthesize bacteriophage Qß conjugates with representative N-glycans and investigate their immunogenicity for raising N-glycan-specific antibodies. An array of Qß glycoconjugates bearing five different human N-glycans and two different chemical linkers were synthesized, and the immunization of the N-glycan-Qß conjugates was performed in mice. We found that the N-glycan-Qß conjugates raised significant IgG antibodies that recognize N-glycans, but, surprisingly, most of the glycan-dependent antibodies were directed to the shared chitobiose core and were nonspecific for respective N-glycan structures. The linker chemistry was found to affect antibody specificity with adipic acid-linked N-glycan-Qß immunogens raising antibodies capable of recognizing both the N-acetylglucosamine (GlcNAc) moieties of the chitobiose core. In contrast, antibodies raised by N-glycan-Qß immunogens with a triazole linker preferentially recognized the innermost N-acetylglucosamine moiety at the reducing end. We also found that sialylation of the N-glycans significantly suppressed the immune response. Furthermore, the N-glycan-Qß immunogens with an adipic acid linker elicited higher glycan-specific antibody titers than the N-glycan-triazole-Qß immunogens. These findings delineate several challenges in eliciting mammalian N-glycan-specific antibodies through the conventional glycoconjugate vaccine design and immunization.


Assuntos
Acetilglucosamina , Formação de Anticorpos , Allolevivirus/química , Animais , Antígenos , Dissacarídeos , Glicoconjugados , Humanos , Mamíferos , Camundongos , Polissacarídeos/química , Triazóis
7.
Chemistry ; 28(16): e202200146, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35106843

RESUMO

Monoclonal antibodies (mAbs) are one of the most rapidly growing drug classes used for the treatment of cancer, infectious and autoimmune diseases. Complement-dependent cytotoxicity (CDC) is one of the effector functions for antibodies to deplete target cells. We report here an efficient chemoenzymatic synthesis of structurally well-defined conjugates of a monoclonal antibody with a rhamnose- and an αGal trisaccharide-cluster to recruit natural anti-rhamnose and anti-αGal antibodies, respectively, to enhance the CDC-dependent targeted cell killing. The synthesis was achieved by using a modular antibody Fc-glycan remodeling method that includes site-specific chemoenzymatic Fc-glycan functionalization and subsequent click conjugation of synthetic rhamnose- and αGal trisaccharide-cluster to provide the respective homogeneous antibody conjugates. Cell-based assays indicated that the antibody-rhamnose cluster conjugates could mediate potent CDC activity for targeted cancer cell killing and showed much more potent efficacy than the antibody-αGal trisaccharide cluster conjugates for CDC effects.


Assuntos
Imunoconjugados , Ramnose , Anticorpos Monoclonais , Apoptose , Fragmentos Fc das Imunoglobulinas
8.
Bioorg Chem ; 128: 106070, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35939855

RESUMO

Sulfation is a common modification of glycans and glycoproteins. Sulfated N-glycans have been identified in various glycoproteins and implicated for biological functions, but in vitro synthesis of structurally well-defined full length sulfated N-glycans remains to be described. We report here the first in vitro enzymatic sulfation of biantennary complex type N-glycans by recombinant human CHST2 (GlcNAc-6-O-sulfotransferase 1, GlcNAc6ST-1). We found that the sulfotransferase showed high antennary preference and could selectively sulfate the GlcNAc moiety located on the Manα1,3Man arm of the biantennary N-glycan. The glycan chain was further elongated by bacterial ß1,4 galactosyltransferase from Neiserria meningitidis and human ß1,4 galactosyltransferase IV(B4GALT4), which led to the formation of different sulfated N-glycans. Using rituximab as a model IgG antibody, we further demonstrated that the sulfated N-glycans could be efficiently transferred to an intact antibody by using a chemoenzymatic Fc glycan remodeling method, providing homogeneous sulfated glycoforms of antibodies. Preliminary binding analysis indicated that sulfation did not affect the apparent affinity of the antibody for FcγIIIa receptor.


Assuntos
Sulfatos , Sulfotransferases , Galactosiltransferases , Glicoproteínas , Humanos , Imunoglobulina G , Polissacarídeos/metabolismo , Sulfotransferases/metabolismo , Carboidrato Sulfotransferases
9.
Biochem J ; 478(8): 1571-1583, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33734311

RESUMO

The α1,6-fucosyltransferase, FUT8, is the sole enzyme catalyzing the core-fucosylation of N-glycoproteins in mammalian systems. Previous studies using free N-glycans as acceptor substrates indicated that a terminal ß1,2-GlcNAc moiety on the Man-α1,3-Man arm of N-glycan substrates is required for efficient FUT8-catalyzed core-fucosylation. In contrast, we recently demonstrated that, in a proper protein context, FUT8 could also fucosylate Man5GlcNAc2 without a GlcNAc at the non-reducing end. We describe here a further study of the substrate specificity of FUT8 using a range of N-glycans containing different aglycones. We found that FUT8 could fucosylate most of high-mannose and complex-type N-glycans, including highly branched N-glycans from chicken ovalbumin, when the aglycone moiety is modified with a 9-fluorenylmethyloxycarbonyl (Fmoc) moiety or in a suitable peptide/protein context, even if they lack the terminal GlcNAc moiety on the Man-α1,3-Man arm. FUT8 could also fucosylate paucimannose structures when they are on glycoprotein substrates. Such core-fucosylated paucimannosylation is a prominent feature of lysosomal proteins of human neutrophils and several types of cancers. We also found that sialylation of N-glycans significantly reduced their activity as a substrate of FUT8. Kinetic analysis demonstrated that Fmoc aglycone modification could either improve the turnover rate or decrease the KM value depending on the nature of the substrates, thus significantly enhancing the overall efficiency of FUT8 catalyzed fucosylation. Our results indicate that an appropriate aglycone context of N-glycans could significantly broaden the acceptor substrate specificity of FUT8 beyond what has previously been thought.


Assuntos
Eritropoetina/metabolismo , Fucose/metabolismo , Fucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Manose/metabolismo , Polissacarídeos/metabolismo , Animais , Sequência de Carboidratos , Galinhas , Eritropoetina/química , Eritropoetina/genética , Fluorenos/química , Fucose/química , Fucosiltransferases/química , Fucosiltransferases/genética , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Células HEK293 , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Cinética , Manose/química , Ovalbumina/química , Ovalbumina/genética , Ovalbumina/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Polissacarídeos/química , Especificidade por Substrato
10.
Molecules ; 27(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35889292

RESUMO

The plant-derived macrocyclic resin glycoside ipomoeassin F (Ipom-F) binds to Sec61α and significantly disrupts multiple aspects of Sec61-mediated protein biogenesis at the endoplasmic reticulum, ultimately leading to cell death. However, extensive assessment of Ipom-F as a molecular tool and a therapeutic lead is hampered by its limited production scale, largely caused by intramolecular assembly of the macrocyclic ring. Here, using in vitro and/or in cellula biological assays to explore the first series of ring-opened analogues for the ipomoeassins, and indeed all resin glycosides, we provide clear evidence that macrocyclic integrity is not required for the cytotoxic inhibition of Sec61-dependent protein translocation by Ipom-F. Furthermore, our modeling suggests that open-chain analogues of Ipom-F can interact with multiple sites on the Sec61α subunit, most likely located at a previously identified binding site for mycolactone and/or the so-called lateral gate. Subsequent in silico-aided design led to the discovery of the stereochemically simplified analogue 3 as a potent, alternative lead compound that could be synthesized much more efficiently than Ipom-F and will accelerate future ipomoeassin research in chemical biology and drug discovery. Our work may also inspire further exploration of ring-opened analogues of other resin glycosides.


Assuntos
Antineoplásicos , Glicoconjugados , Antineoplásicos/química , Glicoconjugados/química , Glicosídeos/farmacologia , Canais de Translocação SEC/metabolismo
11.
J Biol Chem ; 295(50): 17027-17045, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33004438

RESUMO

Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.


Assuntos
Fucosiltransferases/química , Dobramento de Proteína , Cristalografia por Raios X , Células HEK293 , Humanos , Domínios Proteicos , Homologia Estrutural de Proteína , Especificidade por Substrato
12.
J Am Chem Soc ; 143(20): 7828-7838, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33977722

RESUMO

Fc glycosylation profoundly impacts the effector functions of antibodies and often dictates an antibody's pro- or anti-inflammatory activities. It is well established that core fucosylation of the Fc domain N-glycans of an antibody significantly reduces its affinity for FcγRIIIa receptors and antibody-dependent cellular cytotoxicity (ADCC). Previous structural studies have suggested that the presence of a core fucose remarkably decreases the unique and favorable carbohydrate-carbohydrate interactions between the Fc and the receptor N-glycans, leading to reduced affinity. We report here that in contrast to natural core fucose, special site-specific modification on the core fucose could dramatically enhance the affinity of an antibody for FcγRIIIa. The site-selective modification was achieved through an enzymatic transfucosylation with a novel fucosidase mutant, which was shown to be able to use modified α-fucosyl fluoride as the donor substrate. We found that replacement of the core l-fucose with 6-azide- or 6-hydroxy-l-fucose (l-galactose) significantly enhanced the antibody's affinity for FcγRIIIa receptors and substantially increased the ADCC activity. To understand the mechanism of the modified fucose-mediated affinity enhancement, we performed molecular dynamics simulations. Our data revealed that the number of glycan contacts between the Fc and the Fc receptor was increased by the selective core-fucose modifications, showing the importance of unique carbohydrate-carbohydrate interactions in achieving high FcγRIIIa affinity and ADCC activity of antibodies. Thus, the direct site-selective modification turns the adverse effect of the core fucose into a favorable force to promote the carbohydrate-carbohydrate interactions.


Assuntos
Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Receptores de IgG/imunologia , Anticorpos/química , Humanos , Modelos Moleculares , Receptores de IgG/química
13.
Bioconjug Chem ; 32(8): 1888-1897, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34351736

RESUMO

Antibody-drug conjugates (ADCs) are an important class of therapeutic agents that harness the highly specific antigen targeting property of antibodies to deliver toxic drugs for targeted cell killing. Site-specific conjugation methods are highly desirable for constructing homogeneous ADCs that possess a well-defined antibody-to-drug ratio, stability, ideal pharmacological profile, and optimal therapeutic index. We report here a facile synthesis of functionalized glycan oxazolines from free sialoglycans that are key donor substrates for enzymatic Fc glycan remodeling and the application of an efficient endoglycosidase mutant (Endo-S2 D184M) for site-specific glycan transfer to construct homogeneous ADCs. We found that by a sequential use of two coupling reagents under optimized conditions, free sialoglycans could be efficiently converted to selectively functionalized glycan oxazolines carrying azide-, cyclopropene-, and norbornene-tags, respectively, in excellent yield and in a simple one-pot manner. We further demonstrated that the recently reported Endo-S2 D184 M mutant was highly efficient for Fc glycan remodeling with the selectively modified glycan oxazolines to introduce tags into an antibody, which required a significantly smaller amount of glycan oxazolines and a much shorter reaction time than that of the Endo-S D233Q-catalyzed reaction, thus minimizing the side reactions. Finally homogeneous ADCs were constructed with three different click reactions. The resulting ADCs showed excellent serum stability, and in vitro cytotoxicity assays indicated that all the three ADCs generated from the distinct click reactions possessed potent and comparable cytotoxicity for targeted cancer cell killing.


Assuntos
Imunoconjugados/química , Imunoconjugados/farmacologia , Polissacarídeos/química , Receptor ErbB-2/imunologia , Trastuzumab/química , Linhagem Celular Tumoral , Sobrevivência Celular , Química Click , Humanos , Estrutura Molecular , Trastuzumab/metabolismo
14.
Bioorg Med Chem ; 42: 116243, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126284

RESUMO

Core fucosylation is the attachment of an α-1,6-fucose moiety to the innermost N-acetyl glucosamine (GlcNAc) in N-glycans in mammalian systems. It plays a pivotal role in modulating the structural and biological functions of glycoproteins including therapeutic antibodies. Yet, few α-l-fucosidases appear to be capable of removing core fucose from intact glycoproteins. This paper describes a comparative study of the substrate specificity and relative activity of the human α-l-fucosidase (FucA1) and two bacterial α-l-fucosidases, the AlfC from Lactobacillus casei and the BfFuc from Bacteroides fragilis. This study was enabled by the synthesis of an array of structurally well-defined core-fucosylated substrates, including core-fucosylated N-glycopeptides and a few antibody glycoforms. It was found that AlfC and BfFuc could not remove core fucose from intact full-length N-glycopeptides or N-glycoproteins but could hydrolyze only the truncated Fucα1,6GlcNAc-peptide substrates. In contrast, the human α-l-fucosidase (FucA1) showed low activity on truncated Fucα1,6GlcNAc substrates but was able to remove core fucose from intact and full-length core-fucosylated N-glycopeptides and N-glycoproteins. In addition, it was found that FucA1 was the only α-l-fucosidase that showed low but apparent activity to remove core fucose from intact IgG antibodies. The ability of FucA1 to defucosylate intact monoclonal antibodies reveals an opportunity to evolve the human α-l-fucosidase for direct enzymatic defucosylation of therapeutic antibodies to improve their antibody-dependent cellular cytotoxicity.


Assuntos
Fucose/metabolismo , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , alfa-L-Fucosidase/metabolismo , Bacteroides fragilis/enzimologia , Configuração de Carboidratos , Fucose/química , Glicopeptídeos/química , Glicoproteínas/química , Humanos , Lacticaseibacillus casei/enzimologia , Modelos Moleculares , Especificidade por Substrato , alfa-L-Fucosidase/química
15.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830420

RESUMO

The broadly neutralizing antibody PG9 recognizes a unique glycopeptide epitope in the V1V2 domain of HIV-1 gp120 envelope glycoprotein. The present study describes the design, synthesis, and antibody-binding analysis of HIV-1 V1V2 glycopeptide-Qß conjugates as a mimic of the proposed neutralizing epitope of PG9. The glycopeptides were synthesized using a highly efficient chemoenzymatic method. The alkyne-tagged glycopeptides were then conjugated to the recombinant bacteriophage (Qß), a virus-like nanoparticle, through a click reaction. Antibody-binding analysis indicated that the synthetic glycoconjugates showed significantly enhanced affinity for antibody PG9 compared with the monomeric glycopeptides. It was also shown that the affinity of the Qß-conjugates for antibody PG9 was dependent on the density of the glycopeptide antigen display. The glycopeptide-Qß conjugates synthesized represent a promising candidate of HIV-1 vaccine.


Assuntos
Allolevivirus/imunologia , Glicopeptídeos/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/uso terapêutico , Anticorpos Neutralizantes/imunologia , Antígenos/imunologia , Epitopos/genética , Epitopos/imunologia , Glicopeptídeos/genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fagocitose/imunologia
16.
J Org Chem ; 85(24): 16226-16235, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33264019

RESUMO

Two new ring-size-varying analogues (2 and 3) of ipomoeassin F were synthesized and evaluated. Improved cytotoxicity (IC50: from 1.8 nM) and in vitro protein translocation inhibition (IC50: 35 nM) derived from ring expansion imply that the binding pocket of Sec61α (isoform 1) can accommodate further structural modifications, likely in the fatty acid portion. Streamlined preparation of the key diol intermediate 5 enabled gram-scale production, allowing us to establish that ipomoeassin F is biologically active in vivo (MTD: ∼3 mg/kg).


Assuntos
Glicoconjugados , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade
17.
J Am Chem Soc ; 141(21): 8450-8461, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31059257

RESUMO

Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61α from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61α forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61α provides compelling evidence that Sec61α is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61α is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61α function and to further investigate its potential as a therapeutic target for drug discovery.


Assuntos
Glicoconjugados/farmacologia , Canais de Translocação SEC/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Glicoconjugados/química , Humanos , Estrutura Molecular , Transporte Proteico/efeitos dos fármacos , Canais de Translocação SEC/metabolismo
18.
J Org Chem ; 82(9): 4977-4985, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28394135

RESUMO

An efficient synthetic route for ipomoeassin F and its tiglate-modified analogues was developed. The route features late-stage conformation-controlled highly regioselective esterification of the glucose diol in the disaccharide core. The results from the NCI-60 cell line screens of ipomoeassin F were reported for the first time. Moreover, two new C-3-cinnamoyl-Glcp analogues (2 and 3) were prepared. Their in-house cytotoxicity data convey an important message that both identity and positioning of the two α,ß-unsaturated esters are crucial. They are not interchangeable.


Assuntos
Cinamatos/química , Crotonatos/química , Glicoconjugados/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Hemiterpenos , Humanos , Análise Espectral/métodos
19.
Bioorg Med Chem Lett ; 27(12): 2752-2756, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465102

RESUMO

Ipomoeassin F is a plant-derived macrocyclic glycolipid with single-digit nanomolar IC50 values against cancer cell growth. In previous structure-activity relationship studies, we have demonstrated that certain modifications around the fucoside moiety did not cause significant cytotoxicity loss. To further elucidate the effect of the fucoside moiety on the biological activity, we describe here the design and synthesis of several fucose-truncated monosaccharide analogues of ipomoeassin F. Subsequent biological evaluation strongly suggests that the 6-membered ring of the fucoside moiety is essential to the overall conformation of the molecule, thereby influencing bioactivity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Desenho de Fármacos , Fucose/farmacologia , Glicoconjugados/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fucose/química , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
20.
J Org Chem ; 80(18): 9279-91, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26317990

RESUMO

Ipomoeassin F, a macrolide glycoresin containing an embedded disaccharide, possesses potent in vitro antitumor activity with an unknown mechanism of function. It inhibits tumor cell growth with single-digit nanomolar IC50 values, superior to many clinical chemotherapeutic drugs. To facilitate translation of its bioactivity into protein function for drug development, we report here a new synthesis for the gram-scale production of ipomoeassin F (3.8% over 17 linear steps) from commercially available starting materials. The conformation-controlled subtle reactivity differences of the hydroxyl groups in carbohydrates were utilized to quickly construct the disaccharide core, which, along with judicial selection of protecting groups, made the current synthesis very efficient. The same strategy was also applied to the smooth preparation of the 11R-epimer of ipomoeassin F for the first time. Cytotoxicity assays demonstrated the crucial role of the natural 11S configuration. In addition, cell cycle analyses and apoptosis assays on ipomoeassin F and/or its epimer were conducted. This work has laid a solid foundation for understanding the medicinal potential of the ipomoeassin family of glycolipids in the future.


Assuntos
Antineoplásicos/síntese química , Glicoconjugados/síntese química , Glicolipídeos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glicoconjugados/química , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa