Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Glob Chang Biol ; 27(10): 2011-2028, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33528058

RESUMO

Current consensus on global climate change predicts warming trends with more pronounced temperature changes in winter than summer in the Northern Hemisphere at high latitudes. Moderate increases in soil temperature are generally related to faster rates of soil organic carbon (SOC) decomposition in Northern ecosystems, but there is evidence that SOC stocks have remained remarkably stable or even increased on the Tibetan Plateau under these conditions. This intriguing observation points to altered soil microbial mediation of carbon-cycling feedbacks in this region that might be related to seasonal warming. This study investigated the unexplained SOC stabilization observed on the Tibetan Plateau by quantifying microbial responses to experimental seasonal warming in a typical alpine meadow. Ecosystem respiration was reduced by 17%-38% under winter warming compared with year-round warming or no warming and coincided with decreased abundances of fungi and functional genes that control labile and stable organic carbon decomposition. Compared with year-round warming, winter warming slowed macroaggregate turnover rates by 1.6 times, increased fine intra-aggregate particulate organic matter content by 75%, and increased carbon stabilized in microaggregates within stable macroaggregates by 56%. Larger bacterial "necromass" (amino sugars) concentrations in soil under winter warming coincided with a 12% increase in carboxyl-C. These results indicate the enhanced physical preservation of SOC under winter warming and emphasize the role of soil microorganisms in aggregate life cycles. In summary, the divergent responses of SOC persistence in soils exposed to winter warming compared to year-round warming are explained by the slowing of microbial decomposition but increasing physical protection of microbially derived organic compounds. Consequently, the soil microbial response to winter warming on the Tibetan Plateau may cause negative feedbacks to global climate change and should be considered in Earth system models.


Assuntos
Carbono , Solo , Ecossistema , Estações do Ano , Microbiologia do Solo
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(4): 630-636, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34323042

RESUMO

OBJECTIVE: To prepare encapsulated clopidogrel bisulfate (CLP) liposomes so as to deal with the poor water solubility of CLP, and to provide the experimental basis for the development of CLP formulations for intravascular injection. METHODS: CLP-loaded liposomes were prepared using thin film hydration/sonication method and pH gradient active drug loading technology. Then, the morphology, particle size, encapsulation efficiency, drug loading capacity, Zeta potentials and in vitro release behavior were characterized. Bilateral renal arteries of Sprague-Dawley (SD) rats were clamped with micro-artery clamps to establish the model of renal ischemia-reperfusion injury (IRI) in male SD rats. The study aimed to preliminarily investigate the therapeutic effect of CLP-loaded liposome pretreatment on renal IRI in rats. RESULTS: It was found that the optimal formulation and preparation technology of CLP liposomes were as follows: the CLP-to-phospholipid weight ratio of 1∶10, phospholipid-to-cholesterol ratio of 6∶1, octadecylamine-to-CLP ratio of 1.2∶1, PEG 400-to-CLP ratio of 1∶1, and incubation at 50 ℃ for 40 min. Then, following ultrasonication of 100 W efficiency at 5-second intervals for 20 times, CLP loading was conducted using 5 mL of 0.1 mol/L citric acid buffer at pH 3.0. Liposome samples were prepared with the film dispersion method, and the pH value was adjusted to 7.5 through pH gradient active drug loading technology. The CLP-loaded liposomes obtained in this way had a rounded shape, good dispersity, an average particle size of (134.13±2.60) nm, polydispersity index (PDI) of 0.25±0.02, and a Zeta potential of (2.12±0.23) mV. The encapsulation efficiency was found to be (98.66±0.14)%, and the drug loading capacity was (7.47±0.01)%. The in vitro release results showed that 66.24% of CLP was released cumulatively within 72 h. Preliminary efficacy experiments showed that animals pretreated with CLP-loaded liposomes had lower serum levels of blood urea nitrogen and creatinine compared to the levels of IRI model rats without any pretreatment. CONCLUSION: CLP-loaded liposomes were successfully prepared, which might provide the experimental foundation for the future development of CLP formulations for injection.


Assuntos
Lipossomos , Animais , Clopidogrel , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade
3.
J Cell Mol Med ; 21(11): 2852-2862, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28653805

RESUMO

Aberrant microRNA expression is involved in the regulation of various cellular processes, such as proliferation and metastasis in multiple diseases including cancers. MicroRNA-30e-5p (miR-30e) was previously reported as an oncogenic or tumour suppressing miRNA in some malignancies, but its function in lung adenocarcinoma (LAC) remains largely undefined. In this study, we found that the expression of miR-30e was increased in LAC tissues and cell lines, associated with tumour size and represented an independent prognostic factor for overall survival and recurrence of LAC patients. Further functional experiments showed that knockdown of miR-30e suppressed cell growth while its overexpression promoted growth of LAC cells and xenografts in vitro and in vivo. Mechanistically, PTPN13 was identified as the direct target of miR-30e in LAC, in which PTPN13 expression was down-regulated in LAC tissues and showed the inverse correlation with miR-30e expression. Overexpression of PTPN13 inhibited cell growth and rescued the proliferation-promoting effect of miR-30e through inhibition of the EGFR signalling. Altogether, our findings suggest that miR-30e could function as an oncogene in LAC via targeting PTPN13 and act as a potential therapeutic target for treating LAC.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Idoso , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos Nus , MicroRNAs/agonistas , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/mortalidade , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Prognóstico , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Environ Manage ; 57(3): 531-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26475686

RESUMO

Increasing atmospheric nitrogen (N) deposition has the potential to alter plant diversity and thus the function and stability of terrestrial ecosystems. N-limited alpine ecosystems are expected to be particularly susceptible to increasing N deposition. However, little is known about the critical loads and saturation thresholds of ecosystem responses to increasing N deposition on the Tibetan Plateau, despite its importance to ecosystem management. To evaluate the N critical loads and N saturation thresholds in an alpine ecosystem, in 2010, we treated an alpine meadow with five levels of N addition (0, 10, 20, 40, and 80 kg N ha(-1) year(-1)) and characterized plant and soil responses. The results showed that plant species richness and diversity index did not statistically vary with N addition treatments, but they both changed with years. N addition affected plant cover and aboveground productivity, especially for grasses, and soil chemical features. The N critical loads and saturation thresholds, in terms of plant cover and biomass change at the community level, were 8.8-12.7 and 50 kg N ha(-1) year(-1) (including the ambient N deposition rate), respectively. However, pronounced changes in soil inorganic N and net N mineralization occurred under the 20 and 40 kg N ha(-1) year(-1) treatments. Our results indicate that plant community cover and biomass are more sensitive than soil to increasing N inputs. The plant community composition in alpine ecosystems on the Qinghai-Tibetan Plateau may change under increasing N deposition in the future.


Assuntos
Ecossistema , Nitrogênio/análise , Biomassa , Pradaria , Plantas , Poaceae/fisiologia , Solo/química , Tibet
5.
ScientificWorldJournal ; 2015: 617471, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347902

RESUMO

Quantifying the effects of nutrient additions on soil microbial respiration (R m) and its contribution to soil respiration (R s) are of great importance for accurate assessment ecosystem carbon (C) flux. Nitrogen (N) addition either alone (coded as LN and HN) or in combination with phosphorus (P) (coded as LN + P and HN + P) were manipulated in a semiarid alpine meadow on the Tibetan Plateau since 2008. Either LN or HN did not affect R m, while LN + P enhanced R m during peak growing periods, but HN + P did not affect R m. Nutrient addition also significantly affected R m /R s, and the correlations of R m /R s with climatic factors varied with years. Soil water content (Sw) was the main factor controlling the variations of R m /R s. During the years with large rainfall variations, R m /R s was negatively correlated with Sw, while, in years with even rainfall, R m/R s was positively correlated with Sw. Meanwhile, in N + P treatments the controlling effects of climatic factors on R m /R s were more significant than those in CK. Our results indicate that the sensitivity of soil microbes to climatic factors is regulated by nutrient enrichment. The divergent effects of Sw on R m /R s suggest that precipitation distribution patterns are key factors controlling soil microbial activities and ecosystem C fluxes in semiarid alpine meadow ecosystems.


Assuntos
Carbono/química , Consórcios Microbianos/fisiologia , Nitrogênio/química , Fósforo/química , Microbiologia do Solo , Solo/química , Altitude , Análise da Demanda Biológica de Oxigênio , Carbono/metabolismo , Ciclo do Carbono/fisiologia , Clima Desértico , Fertilizantes/análise , Pradaria , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae/fisiologia , Chuva , Tibet
6.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337876

RESUMO

Anthropogenic nutrient additions are influencing the structure and function of alpine grassland ecosystems. However, the underlying mechanisms of the direct and indirect effects of nutrient additions on aboveground net primary productivity (ANPP) are not well understood. In this study, we conducted an eight-year field experiment to explore the ecological consequences of nitrogen (N) and/or phosphorous (P) additions on the northern Tibetan Plateau. ANPP, species diversity, functional diversity, and functional groups were used to assess species' responses to increasing nutrients. Our results showed that nutrient additions significantly increased ANPP due to the release in nutrient limitations. Although N addition had a significant effect on species richness and functional richness, and P and N + P additions altered functional diversity, it was functional groups rather than biodiversity that drove changes in ANPP in the indirect pathways. We identified the important roles of N and P additions in begetting the dominance of grasses and forbs, respectively. The study highlights that the shift of functional groups should be taken into consideration to better predict the structure, function, and biodiversity-ANPP relationship in grasslands, particularly under future multifaceted global change.

7.
Plants (Basel) ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999605

RESUMO

A community functional structure may respond to environmental changes such as nitrogen (N) enrichment by altering intraspecific and interspecific trait variations. However, the relative contributions of both components in determining the community response to N enrichment are unclear. In this study, we measured the plant height (H), leaf area (LA), leaf dry matter content (LDMC), and specific leaf area (SLA) based on a nine-year N addition gradient experiment in an alpine meadow on the Tibetan Plateau. We examined the intraspecific and interspecific variations within and among the communities, the responses of traits in terms of community weighted mean (CWM) and non-weighted mean (CM) to N addition, and the effects of these trait variations on aboveground net primary productivity (ANPP). Our results show that N addition increased the interspecific variation in H while decreasing that of LA within the community, whereas it had no significant effects on the intraspecific variations in the four traits within the community. In contrast, N addition significantly increased the intraspecific variation in H and decreased that of LA among the communities. Moreover, the contribution of intraspecific variation was greater than that of the interspecific variation in terms of CWM for all traits, while the opposite contribution was observed in terms of CM, suggesting that the dominant species would have greater resilience while subdominant species would become less resistant to N addition. Further, intraspecific variations of LA and LDMC within the community played an important role in explaining community productivity. Our results highlight the importance of both intraspecific and interspecific variations in mediating functional trait responses to N enrichment, and intraspecific variation within the communities has important implications for community functioning that should be considered to better understand and predict the responses of the alpine grasslands to N enrichment.

8.
ScientificWorldJournal ; 2013: 415318, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24459432

RESUMO

Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m(3) m(-3). N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Ecossistema , Microclima , Temperatura , Análise de Variância , Biomassa , Nitrogênio/metabolismo , Solo/química , Tibet
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(7): 1749-53, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24059167

RESUMO

The effect of different temperatures on the activity and conformational changes of proteinase K was studied. Methods Proteinase K was treated with different temperatures, then denatured natural substrate casein was used to assay enzyme activity, steady-state and time-resolved fluorescence spectroscopy was used to study tertiary structure, and circular dichroism was used to study secondary structure. Results show with the temperature rising from 25 to 65 degrees C, the enzyme activity and half-life of proteinase K dropped, maximum emission wavelength red shifted from 335 to 354 nm with fluorescence intensity decreasing. Synchronous fluorescence intensity of tryptophan residues decreased and that of tyrosine residues increased. Fluorescence lifetime of tryptophan residues reduced from 4. 427 1 to 4. 032 4 ns and the fraction of alpha-helix dropped. It was concluded that it is simple and accurate to use steady-state/time-resolved fluorescence spectroscopy and circular dichroism to investigate thermal stability of proteinase K. Thermal denaturation of proteinase K followed a three-state process. Fluorescence intensity of proteinase K was affected by fluorescence resonance energy transfer from tyrosine to tryptophan residues. The alpha-helix was the main structure to maintain conformational stability of enzyme active site of proteinase K.


Assuntos
Endopeptidase K/química , Desnaturação Proteica , Espectrometria de Fluorescência/métodos , Temperatura , Dicroísmo Circular/métodos
10.
Sci Total Environ ; 855: 158923, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165909

RESUMO

Many recent studies have explored how global warming and increased nitrogen (N) deposition affect the structure and function of natural ecosystems. However, how ecosystems respond to the combination of warming and N enrichment remains unexplored, especially under asymmetric seasonal warming scenarios. We conducted a decade-long field experiment in an alpine grassland to investigate the effects of warming (ambient condition (NW), winter-only (WW), and year-round (YW) warming) and N addition on the temporal stability of communities. Although N addition significantly reduced community temporal stability in NW, WW, and YW, WW relieved the severely negative effects of N addition compared to NW and YW (from 47.7 % in NW and 76.1 % in YW to 18.6 % in WW under 80 kg N hm-2 year-1). The most remarkable finding is that the main factors driving community stability shifted with warming patterns. The increase in community dominance under NW was a significant driver of the decreased temporal stability in the community. However, the decrease in community stability caused by N addition was ascribed to the decreased stability of both dominant and common species under WW. In contrast, N addition decreased community temporal stability mainly via a decrease in species asynchrony under YW. Our results suggested that warming patterns can modulate the effects of N enhancement on community stability. To predict the effects of climate change on alpine grasslands accurately, the idiosyncratic effects of asymmetric seasonal warming under future climate change scenarios should be considered.


Assuntos
Ecossistema , Pradaria , Nitrogênio/análise , Estações do Ano , Tibet , Solo/química , Biomassa
11.
Ecology ; 104(11): e4167, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37671849

RESUMO

Anthropogenic environmental changes are influencing the structure and function of many ecological communities, but their underlying mechanisms are often poorly understood. We conducted a 7-year field experiment to explore the ecological consequences of nitrogen (N) and phosphorous (P) enrichment in a high-altitude Tibetan alpine grassland. We found that the enrichment of both N and P, but not either alone, increased plant above- and belowground biomass. In contrast, N, but not P, enrichment reduced species richness and altered plant phylogenetic diversity and structure. Whereas plant species loss and changes in phylogenetic structure were mainly driven by higher soil manganese levels under N addition, they were mainly driven by increased plant belowground biomass under the addition of both N and P. Our study highlights the resource co-limitation of community biomass but not the structure of the study grassland, while also identifying soil metal toxicity and belowground competition as important mechanisms driving community changes following nutrient amendment.


Assuntos
Pradaria , Plantas , Biomassa , Filogenia , Solo/química , Nitrogênio/análise , Ecossistema
12.
Sci Total Environ ; 838(Pt 3): 156512, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679928

RESUMO

Identifying ecological strategies based on functional traits can help us better understand plants' adaptations and changes in ecological processes, and thus predict the impact of climate change on ecosystems, especially in the vulnerable alpine grasslands. Herein, we investigated the plant CSR strategies of four grassland types (alpine meadows, AM; alpine meadow steppes, AMS; alpine steppes, AS; and alpine desert steppes, ADS) and its functional groups (grasses, sedges, legumes, and forbs) along the east-to-west gradient of decreasing precipitation on the northern Tibetan grasslands by using Grime's CSR (C: competitor, S: stress tolerator, and R: ruderal) analysis. Although alpine grasslands were dominated by S-strategy, our results also indicated that AM with higher water, nitrogen (N) and phosphorus (P) availability had significantly lower S-strategy values and relatively higher C- and R-strategy values (C: S: R = 6: 63: 31 %) than those in AMS (C: S: R = 3: 94: 3 %,), AS (C: S: R = 3: 87: 10 %), and ADS (C: S: R = 1: 94: 5 %). The CSR strategy values of forbs and legumes showed greater variability compared with grasses and sedges in the environmental gradient. Furthermore, water variability on the precipitation gradient eventually affected plant traits and CSR strategies through soil N and P availability and pH. Our findings highlighted that plant CSR strategies were regulated by the availability of soil resources, and plants adopted more flexible adaptation strategies in relatively resource-rich environments. This study sheds light on the mechanisms of plant adaptation to the changing environment in the alpine grasslands.


Assuntos
Ecossistema , Pradaria , Plantas , Poaceae , Solo , Tibet , Água
13.
Sci Total Environ ; 838(Pt 2): 156150, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35613643

RESUMO

Biodiversity-stability mechanisms have been the focus of many long-term community stability studies. Community functional composition (i.e., functional diversity and functional identity of community plant functional traits) is critical for community stability; however, this topic has received less attention in large-scale studies. Here, we combined a field survey of biodiversity and plant functional traits in 22 alpine grassland sites throughout the northern Tibetan Plateau with 20 years of satellite-sensed proxy data (enhanced vegetation index) of community productivity to identify the factors influencing community stability. Our results showed that functional composition influenced community stability the most, explaining 61.71% of the variation in community stability (of which functional diversity explained 18.56% and functional identity explained 43.15%), which was a higher contribution than that of biodiversity (Berger-Parker index and species evenness; 35.04%). Structural equation modeling suggested that functional identity strongly affected community stability, whereas biodiversity had a minor impact. Furthermore, functional identity of leaf dry matter content regulated community stability by enhancing species dominance (Berger-Parker index). Our findings demonstrate that functional composition, specifically functional identity, plays a key role in community stability, highlighting the importance of functional identity in understanding and revealing the stabilizing mechanisms in these fragile alpine ecosystems which are subjected to increasing environmental fluctuations.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Folhas de Planta , Plantas , Tibet
14.
Ying Yong Sheng Tai Xue Bao ; 33(3): 648-654, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35524515

RESUMO

Global changes have profound impacts on the structure and function of terrestrial ecosystems. It is a prerequisite to realize the sustainable use of ecosystem to clarify the response and adaptation mechanism of ecosystems to global changes. Network of control experiment is an important way to understand the response and adaptation of the structure and function of ecosystems to global change factors at regional and global scales. The scientific top-level design is conducive to the integration, comparison and analysis of integrative network-data, and then supports the development of universal ecological theory. We comprehensively expounded the theoretical basis, methodological principles and brand-new concepts of experimental network design for future global change control experiment networks design from several aspects, such as research progress, development needs, innovative design and research prospects. Taking Chinese grassland ecosystems as an example, based on the concept of space reference points (mean point of water and heat), the innovative design technology system of China's grassland ecosystem networking experiment was proposed, in order to promote the development of networking research of control experiments at both regional and global scales in the future.


Assuntos
Ecossistema , Pradaria , China , Temperatura Alta , Água
15.
Infect Genet Evol ; 101: 105293, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504588

RESUMO

Mitochondria are essential for hepatitis B virus (HBV) infection. Moreover, the findings of our previous study indicate that host mitochondrial genetic factors are associated with chronic hepatitis B (CHB) for the Han Chinese. However, in terms of genetic heterogeneity, the impact of mitochondria on host susceptibility to HBV infection in ethnic minorities in China remains unclear. Here, a total of 7070 subjects who had visited the hospital between June 1, 2019, and April 31, 2020, were enrolled for seroprevalence of HBV infection investigation. A total of 220 individuals with CHB (CHBs) and 223 individuals with a trace of HBV infection (spontaneously recovered subjects, SRs) were analyzed for mitochondrial DNA (mtDNA) sequence variations and classified into respective haplogroups. Haplogroup frequencies were compared between CHBs and SRs. Among eight nationalities, Yi nationality patients had the highest HBsAg prevalence rate (27.9% [95% CI: 25.3%-30.5%]) and the lowest vaccination rate (4.9% [95% CI: 3.7%-6.2%]). After adjustment for age and gender, haplogroup F was a risk factor for CHB infection (P = 0.049, OR = 2.079, 95% CI = 1.002-4.31), while D4 had a significant negative correlation with the HBeAg-positive rate (P = 0.024, OR = 0.215, 95% CI = 0.057-0.816). Together with our previous study, the findings indicate that different nationalities have different genetic susceptibility to HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , China/epidemiologia , DNA Mitocondrial/genética , DNA Viral , Etnicidade/genética , Predisposição Genética para Doença , Hepatite B/epidemiologia , Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B , Vírus da Hepatite B/genética , Hepatite B Crônica/epidemiologia , Hepatite B Crônica/genética , Humanos , Mitocôndrias/genética , Estudos Soroepidemiológicos
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 42(4): 480-4, 502, 2011 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-21866630

RESUMO

OBJECTIVE: To prepare hyaluronic acid modified bovine serum albumin nanoparticle, investigate the modification extent, the drug entrapment property and its anti-tumor effect. METHODS: Bovine serum albumin nanoparticles were prepared by desolvation method, then use hyaluronic acid to modify the surface of bovine serum albumin nanoparticle. The decrement of reactive amino groups on the surface of bovine serum albumin nanoparticles was applied to evaluate the modification extent of hyaluronic acid. Single factor was used to study the effects of several influencing factors in preparation on the modification extent of hyaluronic acid modified bovine serum albumin nanoparticles. The influence of pH on drug entrapment ratio as well as the drug entrapment property were studied. The inhibition rate of nanoparticle on HepG2 was evaluated with MTT asasay. RESULTS: The prepared hyaluronic acid modified bovine serum albumin nanoparticle had a average particle size of 396 nm, and Zeta potential of - 19.7 mV, the deceased ratio of surface reactive amino groups was 34.28%; hyaluronic acid modified mitoxantrone bovine serum albumin nanoparticles had a property of drug load ratio 11.13%, drug entrapment ratio 94.64% and 398 nm average particle size, Zeta potential - 17.9 mV, with a distinguished delayed drug release effect. A higher inhibition rate was observed for hyaluronic acid modified bovine serum albumin nanoparticle than that of mitoxantrone solution (P < 0.05). CONCLUSION: The preparation technique is stable which could be used to prepare hyaluronic acid modified bovine serum albumin nanoparticle, and the prepared nanoparticle has a higer anti-tumor effect than that of mitoxantrone solution.


Assuntos
Antineoplásicos/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Soroalbumina Bovina/farmacologia , Portadores de Fármacos , Composição de Medicamentos/métodos , Células Hep G2 , Humanos , Nanopartículas/química , Soroalbumina Bovina/química
17.
Sci Total Environ ; 800: 149572, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392221

RESUMO

The replacement of dominant sedges/grasses with secondary forbs is common in alpine rangelands, but the underlying plant ecological strategies and their relevance to leaf traits and their variabilities of different plant functional groups remain largely unknown. Here, we measured key leaf traits and analyzed the competitor, stress-tolerator and ruderal (CSR) strategies of major species with different functional groups (sedges, grasses and forbs) in an alpine meadow along a degradation gradient on the Tibetan Plateau. Our results indicated that S-selected species were dominant in both non-degraded (C:S:R = 1:95:4%) and severely degraded (C:S:R = 2:87:11%) meadows. However, there was a shift from S- to R-strategy in the communities after rangeland degradation. More specifically, sedges and grasses with a "conservative" strategy maintained stronger S-strategy to tolerate degraded and stressful conditions. In contrast, forbs with an "opportunistic" strategy (increase 9.5% in R-score) tended to adapt to degraded stages. Moreover, 51.1% and 23.9% of the increased R-scores in forbs were accounted by leaf mass per area and specific leaf area, respectively. Generally, higher leaf water and nitrogen contents coupled with larger variations in leaf traits and flexible SR strategies in forbs enabled them to capitalize on lower soil water and nutrient availability. Our findings highlighted that the contrasting strategies of plant species in response to the decrease in available resources might lead to niche expansion of secondary forbs and loss of diversity in the degraded alpine meadow. The emerging alternative stable states in the degraded rangelands might bring about a predicament for rangeland restoration.


Assuntos
Pradaria , Plantas , Biomassa , Solo , Tibet
18.
Ecol Evol ; 11(19): 13259-13267, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646467

RESUMO

Although many empirical experiments have shown that increasing degradation results in lower aboveground biomass (AGB), our knowledge of the magnitude of belowground biomass (BGB) for individual plants is a prerequisite for accurately revealing the biomass trade-off in degraded grasslands. Here, by linking the AGB and BGB of individual plants, species in the community, and soil properties, we explored the biomass partitioning patterns in different plant functional groups (grasses of Stipa capillacea and forbs of Anaphalis xylorhiza). Our results indicated that 81% and 60% of the biomass trade-off variations could be explained by environmental factors affecting grasses and forbs, respectively. The change in community species diversity dominated the biomass trade-off via either direct or indirect effects on soil properties and biomass. However, the community species diversity imparted divergent effects on the biomass trade-off for grasses (scored at -0.72) and forbs (scored at 0.59). Our findings suggest that plant communities have evolved two contrasting strategies of biomass allocation patterns in degraded grasslands. These are the "conservative" strategy in grasses, in which plants with larger BGB trade-off depends on gigantic roots for soil resources, and the "opportunistic" strategy in forbs, in which plants can adapt to degraded lands using high variation and optimal biomass allocation.

19.
Ecol Evol ; 10(4): 2051-2061, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128137

RESUMO

Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4-6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient-poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.

20.
Ecol Evol ; 9(17): 9782-9793, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534693

RESUMO

The increase in atmospheric nitrogen (N) deposition has resulted in some terrestrial ecological changes. In order to identify the response of sensitive indicators to N input and estimate the sensitivity and saturation thresholds in alpine grasslands, we set up a series of multilevel N addition experiments in four types of alpine grasslands (alpine meadow [AM], alpine meadow-steppe [AMS], alpine steppe [AS], and alpine desert-steppe [ADS]) along with a decreasing precipitation gradient from east to west on the Northern Tibetan Plateau. N addition only had significant effects on species diversity in AMS, while had no effects on the other three alpine grasslands. Aboveground biomass of grasses and overall community in ADS were enhanced with increasing N addition, but such effects did not occur in AS. Legume biomass in ADS and AS showed similar unimodal patterns and exhibited a decreasing tend in AM. Regression fitting showed that the most sensitive functional groups were grasses, and the N saturation thresholds were 103, 115, 136, and 156 kg N hm-2 year-1 in AM, AMS, AS, and ADS, respectively. This suggests that alpine grasslands become more and more insensitive to N input with precipitation decrease. N saturation thresholds also negatively correlated with soil N availability. N sensitivity differences caused by precipitation and nutrient availability suggest that alpine grasslands along the precipitation gradient will respond differently to atmospheric N deposition in the future global change scenario. This different sensitivity should also be taken into consideration when using N fertilization to restore degraded grasslands.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa