RESUMO
Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Material Particulado/análise , Material Particulado/química , Aerossóis/química , Biomassa , China , Cidades , Monitoramento Ambiental , Combustíveis Fósseis , Humanos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Saúde Pública , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/químicaRESUMO
Adverse health effects of condensable organic compounds (COC) and potential secondary organic aerosols from wood combustion emissions are difficult to determine. Hence, available information is usually limited to a small number of specific applications. Therefore, we introduced a simple, fast, and economic method where water-soluble COC (WSCOC) and WSCOC together with water-soluble primary solid particles (WSpSP) from wood combustion were sampled and subsequently exposed to cultured human lung cells. Comparing the cell viability of H187 human epithelial lung cells from five combustion devices, operated at different combustion conditions, no, or only a minor, cytotoxicity of WSCOC is found for stationary conditions in a grate boiler, a log wood boiler, and a pellet boiler. All combustion conditions in a log wood stove and unfavorable conditions in the other devices induce, however, significant cytotoxicity (median lethal concentration LC50 5-17 mg/L). Furthermore, a significant correlation between CO and cytotoxicity was found ( R2 â¼ 0.8) suggesting that the simply measurable gas phase compound CO can be used as a first indicator for the potential harmfulness of wood combustion emissions. Samples containing WSCOC plus WSpSP show no additional cytotoxicity compared to samples with COC only, indicating that WSCOC exhibit much higher cytotoxicity than WSpSP.
Assuntos
Poluentes Atmosféricos , Material Particulado , Biomassa , Humanos , Água , MadeiraRESUMO
We have systematically examined the gas and particle phase emissions from seven wood combustion devices. Among total carbon mass emitted (excluding CO2), CO emissions were dominant, together with nonmethane volatile organic compounds (NMVOCs) (10-40%). Automated devices emitted 1-3 orders of magnitude lower CH4 (0.002-0.60 g kg-1 of wood) and NMVOCs (0.01-1 g kg-1 of wood) compared to batch-operated devices (CH4: 0.25-2.80 g kg-1 of wood; NMVOCs: 2.5-19 g kg-1 of wood). 60-90% of the total NMVOCs were emitted in the starting phase of batch-operated devices, except for the first load cycles. Partial-load conditions or deviations from the normal recommended operating conditions, such as use of wet wood/wheat pellets, oxygen rich or deficit conditions, significantly enhanced the emissions. NMVOCs were largely dominated by small carboxylic acids and alcohols, and furans. Despite the large variability in NMVOCs emission strengths, the relative contribution of different classes showed large similarities among different devices and combustion phases. We show that specific improper operating conditions may even for advanced technology not result in the emission reduction of secondary organic aerosol (SOA) forming compounds and thus not reduce the impact of wood combustion on climate and health.
Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Biomassa , MadeiraRESUMO
Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon ((14)C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The (14)C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining (14)C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.
Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera , Pequim , Biomassa , Radioisótopos de Carbono/análise , China , Carvão Mineral/análise , Combustíveis Fósseis/análise , Estações do Ano , Fuligem/análiseRESUMO
To assign fossil and nonfossil contributions to carbonaceous particles, radiocarbon ((14)C) measurements were performed on organic carbon (OC), elemental carbon (EC), and water-insoluble OC (WINSOC) of aerosol samples from a regional background site in South China under different seasonal conditions. The average contributions of fossil sources to EC, OC and WINSOC were 38 ± 11%, 19 ± 10%, and 17 ± 10%, respectively, indicating generally a dominance of nonfossil emissions. A higher contribution from fossil sources to EC (â¼51%) and OC (â¼30%) was observed for air-masses transported from Southeast China in fall, associated with large fossil-fuel combustion and vehicle emissions in highly urbanized regions of China. In contrast, an increase of the nonfossil contribution by 5-10% was observed during the periods with enhanced open biomass-burning activities in Southeast Asia or Southeast China. A modified EC tracer method was used to estimate the secondary organic carbon from fossil emissions by determining (14)C-derived fossil WINSOC and fossil EC. This approach indicates a dominating secondary component (70 ± 7%) of fossil OC. Furthermore, contributions of biogenic and biomass-burning emissions to contemporary OC were estimated to be 56 ± 16% and 44 ± 14%, respectively.
Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Movimentos do Ar , Biomassa , China , Combustíveis Fósseis/análise , Ilhas , Estações do AnoRESUMO
We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January-February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m(-3), with a mean value of 20 ng m(-3). We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)(-1). Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.
Assuntos
Carbono/química , Fenóis/química , Madeira , Monitoramento Ambiental , Estações do Ano , Reino UnidoRESUMO
Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of â¼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.