Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(8): 1235-1247, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34103689

RESUMO

Voltage-gated sodium channel Nav1.7 robustly expressed in peripheral nociceptive neurons has been considered as a therapeutic target for chronic pain, but there is no selective Nav1.7 inhibitor available for therapy of chronic pain. Ralfinamide has shown anti-nociceptive activity in animal models of inflammatory and neuropathic pain and is currently under phase III clinical trial for neuropathic pain. Based on ralfinamide, a novel small molecule (S)-2-((3-(4-((2-fluorobenzyl) oxy) phenyl) propyl) amino) propanamide (QLS-81) was synthesized. Here, we report the electrophysiological and pharmacodynamic characterization of QLS-81 as a Nav1.7 channel inhibitor with promising anti-nociceptive activity. In whole-cell recordings of HEK293 cells stably expressing Nav1.7, QLS-81 (IC50 at 3.5 ± 1.5 µM) was ten-fold more potent than its parent compound ralfinamide (37.1 ± 2.9 µM) in inhibiting Nav1.7 current. QLS-81 inhibition on Nav1.7 current was use-dependent. Application of QLS-81 (10 µM) caused a hyperpolarizing shift of the fast and slow inactivation of Nav1.7 channel about 7.9 mV and 26.6 mV, respectively, and also slowed down the channel fast and slow inactivation recovery. In dissociated mouse DRG neurons, QLS-81 (10 µM) inhibited native Nav current and suppressed depolarizing current pulse-elicited neuronal firing. Administration of QLS-81 (2, 5, 10 mg· kg-1· d-1, i.p.) in mice for 10 days dose-dependently alleviated spinal nerve injury-induced neuropathic pain and formalin-induced inflammatory pain. In addition, QLS-81 (10 µM) did not significantly affect ECG in guinea pig heart ex vivo; and administration of QLS-81 (10, 20 mg/kg, i.p.) in mice had no significant effect on spontaneous locomotor activity. Taken together, our results demonstrate that QLS-81, as a novel Nav1.7 inhibitor, is efficacious on chronic pain in mice, and it may hold developmental potential for pain therapy.


Assuntos
Analgésicos/uso terapêutico , Fluorbenzenos/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neuralgia/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Animais , Formaldeído , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Cobaias , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente , Neuralgia/etiologia , Neurônios/efeitos dos fármacos , Nervos Espinhais/lesões
2.
Clin Exp Pharmacol Physiol ; 36(2): 154-61, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18986330

RESUMO

1. The aims of the present study were to investigate the pharmacological effects of quercetin on wild-type (WT) and mutant (I502A) human (h) Kv1.5 channel currents (I(kur)) and to identify whether mutation in the S6 segment is critical to activation of I(kur) by quercetin. 2. Experiments were performed on WT and site-directed mutant hKv1.5 channels, which were stably expressed in Xenopus oocytes using the two-microelectrode voltage-clamp technique. 3. Quercetin increased WT hKv1.5 channel current in a concentration-, voltage- and time-dependent manner, with an EC(50) of 37.8 micromol/L and a negative shift in the steady state activation and inactivation curves. Quercetin accelerated channel activation and inactivation, significantly decreasing activation and inactivation time constants. However, mutating the I502 residue to Ala abolished the activating effect of quercetin. Quercetin did not modify the activation and inactivation kinetics of I502A channels. As an anti-oxidant, tanshinone IIA (4 micromol/L) inhibited the H(2)O(2)-induced activation of WT hKv1.5 channels. In contrast, quercetin had no significant effect. 4. We conclude that: (i) quercetin preferentially binds to and increases the current amplitude of WT hKv1.5 channels; (ii) Ile502, an aliphatic and neutral amino acid residue residing in the S6 segment, is important in quercetin binding; and (iii) quercetin-induced changes in the properties of WT hKv1.5 channels may be foreign to its own anti-oxidant action.


Assuntos
Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Mutação , Quercetina/farmacologia , Abietanos , Potenciais de Ação/efeitos dos fármacos , Aminoácidos Neutros/genética , Animais , Clonagem Molecular , Relação Dose-Resposta a Droga , Eletrofisiologia , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenantrenos/farmacologia , Ligação Proteica , Fatores de Tempo , Xenopus laevis
3.
Zhonghua Xin Xue Guan Bing Za Zhi ; 37(2): 165-8, 2009 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-19719998

RESUMO

OBJECTIVE: To observe the effects of telmisartan on Kv1.3 and Kv1.5 potassium channels expressed in Xenopus oocytes. METHODS: Kv1.3 and Kv1.5 potassium channel currents expressed in Xenopus oocytes were recorded and observed in the absence and presence of telmisartan using standard two-microelectrode voltage clamp techniques. RESULTS: Telmisartan resulted in a concentration- and voltage-dependent inhibition effect on Kv1.3 channel current (IC(50) 2.05 micromol/L)and on Kv1.5 channel current (IC(50) 2.37 micromol/L). CONCLUSIONS: Telmisartan blocks open-state Kv1.3 channel which could be one of the mechanisms related to its immunomodulatory and anti-atherosclerosis effect. Telmisartan also blocks open-state Kv1.5 channel which might partly account for its effect on reducing the incidence of atrial fibrillation.


Assuntos
Benzimidazóis/farmacologia , Benzoatos/farmacologia , Canal de Potássio Kv1.3/efeitos dos fármacos , Canal de Potássio Kv1.5/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Animais , Técnicas In Vitro , Oócitos/metabolismo , Técnicas de Patch-Clamp , Telmisartan , Xenopus
4.
Acta Pharmacol Sin ; 29(8): 913-22, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18664324

RESUMO

AIM: The objectives of this study were to investigate the inhibitory action of telmisartan, a selective angiotensin II type 1 receptor antagonist, on hKv1.5 and human ether-a-go-go-related gene (HERG) channels expressed on Xenopus laevis oocytes. METHODS: hKv1.5 and HERG channels were expressed on Xenopus laevis oocytes and studied using the 2-microelectrode voltage clamp technique. RESULTS: In hKv1.5 channels, telmisartan produced a voltage- and concentration-dependent inhibition; the efficacies of blockade were different at peak and 1.5 s end-pulse currents, which were 7.75%+/-2.39% (half-maximal inhibition concentration [IC50]=2.25+/-0.97 micromol/L) and 52.64%+/-3.77% (IC50=0.82+/-0.39 micromol/L) at 1 micromol/L telmisartan, respectively. Meanwhile, telmisartan accelerated the inactivation of the channels. However, telmisartan exhibited a low affinity for HERG channels (IC50=24.35+/-5.06 micromol/L); the blockade was voltage- and concentration-dependent. Telmisartan preferentially blocked open-state HERG channels. The slow time constants of deactivation were accelerated (n=6, P<0.05), which was inconsistent with the "foot-in-the-door"effect. CONCLUSION: Telmisartan blocks hKv1.5 potassium channels involving open and inactivated states at plasma concentration levels of therapeutic doses; whereas the blockade of HERG channels occurs only at supra plasma concentration levels of therapeutic doses and preferentially in open and closed-state channels.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canal de Potássio Kv1.5/antagonistas & inibidores , Bloqueadores dos Canais de Potássio , Animais , Relação Dose-Resposta a Droga , Eletrofisiologia , Feminino , Humanos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Telmisartan , Xenopus laevis
5.
Sheng Li Xue Bao ; 60(4): 525-34, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18690396

RESUMO

In the present study, we investigated the inhibitory action of ketanserin on wild-type (WT) and Y652 mutant human ether-a-go-go-related gene (HERG) potassium channels expressed in Xenopus oocytes and the effects of changing the channel molecular determinants characteristics on the blockade with and without ketanserin intervention using standard two-microelectrode voltage-clamp techniques. Point mutations were introduced into HERG gene (Y652A and Y652R) and subcloned into the pSP64 plasmid expression vector. Complementary RNAs for injection into oocytes were prepared with SP6 Cap-Scribe after linearization of the expression construct with EcoR I. Clampfit 9.2 software was employed for data collection and analysis. Origin 6.0 software was used to fit the data, calculate time constants and plot histograms. The results showed that ketanserin blocked WT HERG currents in voltage- and concentration-dependent manner and showed minimal tonic blockade of HERG current evaluated by the envelope of tails test. The IC50 value was (0.38+/-0.04) micromol/L for WT HERG potassium channel. The peaks of the I-V relationship for HERG channel suggested a negative shift in the voltage-dependence of activation after using ketanserin, whose midpoint of activation values (V1/2) were (-16.59+/-1.01) mV (control) vs (-20.59+/-0.87) mV (ketanserin) at 0.1 micromol/L, (-22.39+/-0.94) mV at 1 micromol/L, (-23.51+/-0.91) mV at 10 micromol/L, respectively (P<0.05, n=6). Characteristics of blockade were consistent with an open-state channel blockade, because the extent and rate of onset of blockade was voltage-dependent, increasing at more potentials even in the condition of leftward shift of activation curve. Meanwhile, in the different depolarization duration, the fractional blockade of end-pulse step current and peak tail current at 100 ms duration was significantly lower than that at 400 ms and 700 ms, which indicated that following the channel activation fractional blockade was enhanced by the activated channels. Ketanserin could also modulate the inactivation of HERG channel, which shifted the voltage-dependence of WT HERG channel inactivation curve from (-51.71+/-2.15) mV to (-80.76+/-14.98) mV (P<0.05, n=4). The S6 mutation, Y652A and Y652R, significantly attenuated the blockade by ketanserin. The IC50 value were (27.13+/-9.40) micromol/L and (20.20+/-2.80) micromol/L, respectively, increased by approximately 72-fold for Y652A and 53-fold for Y652R compared to that of WT HERG channel blockade [(0.38+/-0.04) micromol/L]. However, between the inhibitory effects of Y652A and Y652R, there was no significant difference. In conclusion, ketanserin blocks WT HERG currents in voltage- and concentration-dependent manner and preferentially blocks open-state HERG channels. Tyr-652 is one of the critical residues in the ketanserin-binding sites.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Ketanserina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Humanos , Mutação , Oócitos , Técnicas de Patch-Clamp , Xenopus
6.
Chin J Integr Med ; 16(5): 430-4, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20535583

RESUMO

OBJECTIVE: To observe the effect of matrine on human ether à go-go related gene (HERG) potassium channels expressed in Chinese hamster ovary (CHO) cells and investigate whether HERG channel is a new target of the pharmacological effect of matrine on arrhythmia and tumor METHODS: HERG channel potassium current in CHO cell was recorded using whole-cell patch-clamp technique, and the influence of matrine on the current was explored. RESULTS: Matrine inhibited HERG potassium current in a dose-dependent manner, and the 50% inhibitory concentration (IC IC(50)) was 411±23 µmol/L. Matrine had no significant effect on the activation kinetics, and mainly blocked HERG channels in their closed state. CONCLUSIONS: The blocking effect of matrine on HERG channels might be one of the mechanisms against arrythmias and tumors. Unlike most other blockers exerting blocking effect at the intracellular sites by entering the cell with the opening of HERG channel, matrine blocked HERG channels at the extracellular sites.


Assuntos
Alcaloides/farmacologia , Canais de Potássio Éter-A-Go-Go/genética , Quinolizinas/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Matrinas
7.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 24(3): 329-33, 2008 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-21141595

RESUMO

AIM: To explore a method of the stable and persistent expression of HERG(human ether-a-go-go-related gene) channels in Xenopus oocytes, and investigate the alteration of rest membrane potential of oocytes and electrophysiological properties of expressed channel in different culture duration. METHODS: HERG mRNA for injection was prepared with in intro transcription using vector plasmid pSP64 containing HERG cDNA fragment. Expressed HERG current was recorded using standard two-microelectrode voltage-clamp technique. RESULTS: (1) Functional channels, with electrophysiological properties consistent with those of HERG channels were persistently expressed in oocytes membrane with this method. Furthermore, channel current could be recorded stably in 10-15 days. (2) The negative value of rest membrane potential increased gradually in the 3, 6, and 9 days of culture, and then decreased in the 12 days. The potential of peak value of inward rectification shifted gradually to the positive direction in 3, 6 and 9 days, and recovered in 12 days. Half-maximal activation potential (V1/2) of heterological expressed current shifted gradually to the negative direction in 3, 6 and 9 days of culture and then recovered in 12 days, the tendency of change was coincident with that of membrane rest potential. CONCLUSION: The investigation provides a method of persistent expression of HERG channel in Xenopus oocytes and offers evidences for the difference of electrophysiological experimental data of studies of molecular site and drugs effect of HERG channel in different experimental conditions.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Potenciais da Membrana , Oócitos/metabolismo , Animais , Canais de Potássio Éter-A-Go-Go/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Xenopus laevis
8.
Chin Med J (Engl) ; 121(24): 2584-91, 2008 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-19187600

RESUMO

BACKGROUND: Ketanserin (KT), a selective serotonin (5-HT) 2-receptor antagonist, reduces peripheral blood pressure by blocking the activation of peripheral 5-HT receptors. In this study electrophysiological method was used to investigate the effect of KT and potassium ion on Kv1.3 potassium channels and explore the role of blocker KT in the alteration of channel kinetics contributing to the potassium ion imbalances. METHODS: Kv1.3 channels were expressed in xenopus oocytes, and currents were measured using the two-microelectrode voltage-clamp technique. RESULTS: KCl made a left shift of activation and an inactivation curve of Kv1.3 current and accelerated the activation and inactivation time constant. High extracellular [K(+)] attenuated the blockade effect of KT on Kv1.3 channels. In the presence of KT and KCl the activation and inactivation time constants were not influenced significantly no matter what was administered first. KT did not significantly inhibit Kv1.3 current induced by tetraethylammonium (TEA). CONCLUSIONS: KT is a weak blocker of Kv1.3 channels at different concentrations of extracellular potassium and binds to the intracellular side of the channel pore. The inhibitor KT of ion channels is not fully effective in clinical use because of high [K(+)](o) and other electrolyte disorders.


Assuntos
Ketanserina/farmacologia , Canal de Potássio Kv1.3/efeitos dos fármacos , Canal de Potássio Kv1.3/metabolismo , Potássio/farmacologia , Animais , Eletrofisiologia , Feminino , Oócitos , Técnicas de Patch-Clamp , Antagonistas da Serotonina/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa