RESUMO
The yak is an agricultural animal with strong disease resistance in Qinghai-Tibet Plateau. Immune organs are directly involved in the body's immune response and protect it from external aggression. In this study, we characterized and evaluated the main markers of interleukin (IL)-1ß, IL-17a, hypoxia inducer factor-1 (HIF-1)α, and heat shock protein 90 (HSP90) in the lymph nodes, spleen, thymus, and hemal nodes of adult yaks using network informatics, molecular cloning, immunohistochemistry, real-time quantitative polymerase chain reaction (RT-qPCR), and western blotting. We first cloned the IL-1ß and IL-17a mRNA of yaks. A significant feature was the higher IL-1ß and IL-17a expression in the lymph nodes than in the spleen, hemal nodes, and thymus. Immunohistochemistry and immunofluorescence revealed that IL-1ß and IL-17a cells were mainly located in the paracortex area of the lymph nodes and the T-cell-dependent area in the hemal nodes and spleen. Several HIF-1α proteins were detected in the cortex of the hemal nodes mantle, while HSP90 was detected in the lymphoid nodules of the hemal nodes and lymph nodes. This study sheds light on the relationship between the morphology and function of these organs and provides an important reference for studies on the participation of yak immune organs in immune responses.
RESUMO
Near-infrared (NIR) organic solid-state lasers play an essential role in applications ranging from laser communication to infrared night vision, but progress in this area is restricted by the lack of effective excited-state gain processes. Herein, we originally proposed and demonstrated the cascaded occurrence of excited-state intramolecular proton transfer for constructing the completely new energy-level systems. Cascading by the first ultrafast proton transfer of <430â fs and the subsequent irreversible second proton transfer of ca. 1.6â ps, the stepwise proton transfer process favors the true six-level photophysical cycle, which supports efficient population inversion and thus NIR single-mode lasing at 854â nm. This work realizes longest wavelength beyond 850â nm of organic single-crystal lasing to date and originally exploits the cascaded excited-state molecular proton transfer energy-level systems for organic solid-state lasers.
RESUMO
Intramolecular spatial charge transfer (ISCT) plays a critical role in determining the optical and charge transport properties of thermally activated delayed fluorescence (TADF) materials. Herein, a new donor/acceptor-type TADF compound based on rigid dibenzothiophene sulfone (DBTS) moiety, STF-DBTS, was designed and synthesized. Fluorene unit was used as a rigid linker to position the rigid acceptor and donor subunit in close vicinity with control over their spacing and molecular structure and to achieve high photoluminescence quantum yield (â¼53%) and TADF property. For comparison purposes, we constructed the more flexible STF-DPS with a less rotationally constrained diphenylsulphone (DPS) acceptor instead of the rigid DBTS units, and STF-DPS showed no TADF properties and lower PLQY (16.0%). Organic light-emitting diodes (OLEDs) based on STF-DBTS achieve an external quantum efficiency (EQE) of 10.3% at 488 nm, which is a fivefold improvement in EQE with respect to STF-DPS.
RESUMO
Gastric carcinoma is a frequent malignant tumor worldwide. NM23 plays an important role in pathological processes, including in the occurrence and development of tumors. The purpose of this study is to examine the effect of NM23 transfection of human gastric carcinoma cells (BGC-823) on growth and metastases of BGC-823 abdominal cancer xenografts in nude mice. BGC-823 cells were transfected with an adenovirus vector for NM23 (NM23-OE), transfected with an empty vector (NC), or were not transfected (Ctrl). Eighteen female BALB/c-nu mice were randomly divided into three groups (six per group) according to the type of BGC-823 cells administered by intraperitoneal injection. After 2 weeks, necropsies of mice were performed, abdominal circumferences were measured, and abdominal cavities were searched by ultrasound. In order to observe the xenografts in nude mice, there were gross macroscopic observations and microscopic observations. In addition, immunohistochemical analysis and western blot of NM23 were also performed. Green fluorescence in the NM23-OE and NC cells indicated successful transfection. The multiplicity of infection is 80%. A comparison of the three groups of mice indicated the NM23-OE group had positive conditions (abdominal circumferences: 81.83 ± 2.40 mm), but the other groups had negative conditions and enlarged abdomens (NC: 90.83 ± 2.32 mm; Ctrl: 92.67 ± 2.07 mm). Ultrasound observations confirmed large tumors in the NC and Ctrl groups, but did not find in the NM23-OE group. There were no obvious ascites in the NM23-OE group, but the cytological examination of ascites exfoliation in NC and Ctrl groups indicated that there were large and deep-stained gastric carcinoma cells. Tumor expression of NM23 was greater in the NM23-OE group than in the NC and Ctrl groups (both p < 0.05). In conclusion, transfection of BCG-823 cells with NM23 rather than an empty vector (NC) or no vector (Ctrl) led to reduced growth and metastases of abdominal cancer xenografts in nude mice.
RESUMO
To adapt to the extreme conditions of plateau environments, yaks have evolved thick hair, making them an ideal model for investigating the mechanisms involved in hair growth. We can gain valuable insights into how hair follicles develop and their cyclic growth in challenging environments by studying yaks. However, the lack of essential data on yak hair follicle histology and the absence of in vitro cell models for hair follicles serve as a limitation to such research objectives. In this study, we investigated the structure of skin tissue during different hair follicle cycles using the yak model. Additionally, we successfully established in vitro models of hair follicle-associated cells derived from yak skin, including dermal papilla cells (DPCs), preadipocytes, and fibroblasts. We optimized the microdissection technique for DPCs culture by simplifying the procedure and reducing the time required. Furthermore, we improved the methodology used to differentiate yak preadipocytes into mature adipocytes, thus increasing the differentiation efficiency. The introduction of yak as a natural model provides valuable research resources for exploring the mechanisms of hair growth and contributes to a deeper understanding of hair follicle biology and the development of regenerative medicine strategies.
RESUMO
Hsp70 and Hsp90 play an important role in testis development and spermatogenesis regulation, but the exact connection between Hsp70 and Hsp90 and metabolic stress in cattle is unclear. Here, we focused on the male cattle−yak and yak, investigated the expression and localization of Hsp70 and Hsp90 in their tissues, and explored the influence of these factors on development and metabolism. In our study, a total of 54 cattle (24 cattle−yaks and 30 yaks; aged 1 day to 10 years) were examined. The Hsp90 mRNA of the cattle−yak was first cloned and compared with that of the yak, and variation in the amino acid sequence was found, which led to differences in protein spatial structure. Using real-time quantitative PCR (RT-qPCR) and Western blot (WB) techniques, we investigated whether the expression of Hsp70 and Hsp90 mRNA and protein are different in the cattle−yak and yak. We found a disparity in Hsp70 and Hsp90 mRNA and protein expression in different non-reproductive organs and in testicular tissues at different stages of development, while high expression was observed in the testes of both juveniles and adults. Moreover, it was intriguing to observe that Hsp70 expression was significantly high in the yak, whereas Hsp90 was high in the cattle−yak (p < 0.01). We also examined the location of Hsp70 and Hsp90 in the testis by immunohistochemical (IHC) and immunofluorescence (IF) techniques, and the results showed that Hsp70 and Hsp90 were positive in the epithelial cells, spermatogenic cells, and mesenchymal cells. In summary, our study proved that Hsp70 and Hsp90 expressions were different in different tissues (kidney, heart, cerebellum, liver, lung, spleen, and testis), and Hsp90 expression was high in the testis of the cattle−yak, suggesting that dysplasia of the cattle−yak may correlate with an over-metabolism of Hsp90.
RESUMO
A narrowband blue CP-TADF emitter with a rigid hetero-helicene structure (QAO-PhCz) was synthesized and characterized. QAO-PhCz exhibits good electroluminescence performance (EQE = 14.0%) and narrow FWHM. The enantiomers of QAO-PhCz display CPL and CPEL properties with |glum| and |gEL|values of up to 1.1 × 10-3 and 1.5 × 10-3, respectively.
RESUMO
Three emissive bridged-triphenylamine derivatives are designed and synthesized by incorporating carbon (DQAO), oxygen (OQAO), and sulfur (SQAO) atoms with two carbonyl groups. The fully bridged geometry and unique frontier molecular orbital distribution reveal its potential as narrowband thermally activated delayed fluorescence emitters. DQAO-, OQAO-, and SQAO-based organic light-emitting diodes exhibit the maximum external quantum efficiency (EQEmax) of 15.2%, 20.3%, and 17.8% for blue, green, and yellow, respectively.
RESUMO
Porous graphene materials show outstanding performance in energy storage field due to their unique microstructure and properties. To construct 3D hierarchical porous graphene and combine with conductive polyaniline is an effective way to realize high energy density and good cycling stability. The interlamellar macroporous structure of 3D graphene was constructed by polystyrene (PS) microspheres and nickel foam as double templates. The mesoporous structure was etched in 3D macroporous graphene sheets by potassium hydroxide (KOH) chemical activation. And 3D hierarchical porous graphene (3D-hpGr) composited with polyaniline (PANI) by in situ chemical oxidative polymerization to obtain 3D-hpGr/PANI composites. The effect of the introduction of 3D-hpGr on microstructure, morphology and electrochemical performance of the composites was investigated. PANI nanowire arrays successfully decorate the surface of the 3D-hpGr sheets when the amount of 3D-hpGr reaches 40% (wt%). The specific capacitance of 3D-hpGr/PANI40 reaches 573 F g-1 at 0.5 A g-1, much higher than that of pure PANI (419 F g-1). The retention ratio of 3D-hpGr/PANI40 retains 84% of its initial specific capacitance after 1000 cycles at 1.0 A g-1, and the cycling stability of all composites is higher than that of pure PANI (69%). The potential drop of 3D-hpGr/PANI composites decreases from 0.339 V to 0.139 V, and the energy density increases consequently. The energy density of 3D-hpGr/PANI40 reaches 31.2 W h kg-1 at the power density of 0.709 kW kg-1.
RESUMO
In this work, two novel thermally activated delayed fluorescence (TADF) emitters, 2tDMG and 3tDMG, are synthesized for high-efficiency organic light-emitting diodes (OLEDs), The two emitters have a tilted face-to-face alignment of donor (D)/acceptor (A) units presenting intramolecular noncovalent interactions. The two TADF materials are deposited either by an evaporation-process or by a solution-process, both of them leading to high OLED performance. 2tDMG used as the emitter in evaporation-processed OLEDs achieves a high external quantum efficiency (EQE) of 30.8% with a very flat efficiency roll-off of 7% at 1000 cd m-2 . The solution-processed OLEDs also display an interesting EQE of 16.2%. 3tDMG shows improved solubility and solution processability as compared to 2tDMG, and thus a high EQE of 20.2% in solution-processed OLEDs is recorded. The corresponding evaporation-processed OLEDs also reach a reasonably high EQE of 26.3%. Encouragingly, this work provides a novel strategy to address the imperious demands for OLEDs with high EQE and low roll-off.
RESUMO
Methylenetetrahydrofolate reductase (MTHFR), an enzyme expressed in mammalian testes, exerts a direct effect on spermatogenesis; however, its protein characteristics in bovine testes remain unknown. Here, we analysed bovine testicular structure, MTHFR bioinformatics profile, mRNA, and protein expression characteristics in yellow-cattle (y-c) and yak testis using histological procedures, bioinformatics analysis, qRT-PCR, and western blot. Testes from 13 bovines, ≤2 years juvenile (y-c, n = 3; yak, n = 3) and ≥3 years adult (y-c, n = 3; yak, n = 4) were collected and analysed. Anatomical characteristics of testis in y-c and yak were similar except the weight or size for which that of y-c was significantly higher or greater than yak. In y-c, an open reading frame (ORF) for 2600 nucleotides sequence, encoding 655 amino acids showed high homology with zebu cattle (99.51%) and wild yak (98.68%). Secondary and 3D protein structures were similar to that of humans with differences in the number of nucleotides, amino acids, and some physico-chemical characteristics. MTHFR mRNA expression in y-c and yak were significantly higher in adult testes compared with juvenile ones. However, its protein expression was higher, but not statistically significant, in adult y-c and yak compared to the juvenile ones. The highlights and inferences of these and other findings are discussed.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer with poor prognosis because it is highly resistant to traditional chemotherapy and radiotherapy and it has a low rate of surgical resection eligibility. Pancreatic stellate cells (PSC) have become a research hotspot in recent years, and play a vital role in PDAC microenvironment by secreting soluble factors such as transforming growth factor ß, interleukin-6, stromal cell-derived factor-1, hepatocyte growth factor and galectin-1. These PSC-derived cytokines and proteins contribute to PSC activation, participating in PDAC cell proliferation, migration, fibrosis, angiogenesis, immunosuppression, epithelial-mesenchymal transition, and chemoradiation resistance, leading to malignant outcome. Consequently, targeting these cytokines and proteins or their downstream signaling pathways is promising for treating PDAC.