RESUMO
Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Potenciais de Ação/fisiologia , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Cães , Furanos/farmacologia , Expressão Gênica , Cobaias , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Moxifloxacina/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Potássio/metabolismo , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Sódio/metabolismo , Sulfonamidas/farmacologia , Transgenes , Xenopus laevisRESUMO
Covalent organic frameworks (COFs), at the forefront of porous materials, hold tremendous potential in membrane separation; however, achieving high continuity in COF membranes remains crucial for efficient gas separation. Here, we present a unique approach termed assembly-dissociation-reconstruction for fabricating COF membranes tailored for CO2/N2 separation. A parent COF is designed from two-node aldehyde and three-node amine monomers and dissociated to high-aspect-ratio nanosheets. Subsequently, COF nanosheets are orderly reconstructed into a crack-free membrane by surface reaction under water evaporation. The membrane exhibits high crystallinity, open pores and a strong affinity for CO2 adsorption over N2, resulting in CO2 permeance exceeding 1060 GPU and CO2/N2 selectivity surpassing 30.6. The efficacy of this strategy offers valuable guidance for the precise fabrication of gas-separation membranes.
RESUMO
Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.
Assuntos
Proteínas , Reprodutibilidade dos Testes , Proteínas/metabolismo , Ligação ProteicaRESUMO
Critical Assessment of Structure Prediction 15 (CASP15) added a new category of ligand prediction to promote the development of protein/RNA-ligand modeling methods, which have become important tools in modern drug discovery. A total of 22 targets were released, including 18 protein-ligand targets and 4 RNA-ligand targets. We applied our recently developed template-guided method to the protein-ligand complex structure predictions. The method combined a physicochemical, molecular docking method, and a bioinformatics-based ligand similarity method. The Protein Data Bank was scanned for template structures containing the target protein, homologous proteins, or proteins sharing a similar fold with the target protein. The binding modes of the co-bound ligands in the template structures were used to guide the complex structure prediction for the target. The CASP assessment results show that the overall performance of our method was ranked second when the top predicted model was considered for each target. Here, we analyzed our predictions in detail, and discussed the challenges including protein conformational changes, large and flexible ligands, and multiple diverse ligands in a binding pocket.
Assuntos
Proteínas , RNA , Sítios de Ligação , Simulação de Acoplamento Molecular , Ligantes , Ligação Proteica , Proteínas/química , RNA/metabolismo , Conformação ProteicaRESUMO
Covalent organic frameworks (COFs) mixed matrix membranes (MMMs) combining individual attributes of COFs and polymers are promising for gas separation. However, applying COF MMMs for propylene/propane (C3 H6 /C3 H8 ) separation remains a big challenge due to COF inert pores and C3 H6 /C3 H8 similar molecular sizes. Herein, the designed synthesis of a Cu(I) coordinated COF for membrane C3 H6 /C3 H8 separation is reported. A platform COF is synthesized from 5,5'-diamino-2,2'-bipyridine and 2-hydroxybenzene-1,3,5-tricarbaldehyde. This COF possesses a porous 2D structure with high crystallinity. Cu(I) is coordinated to bipyridyl moieties in the COF framework, acting as recognizable sites for C3 H6 gas, as shown by the adsorption measurements. Cu(I) COF is blended with 6FDA-DAM polymer to yield MMMs. This COF MMM exhibits selective and permeable separation of C3 H6 from C3 H8 (C3 H6 permeability of 44.7 barrer, C3 H6 /C3 H8 selectivity of 28.1). The high porosity and Cu(I) species contribute to the great improvement of separation performance by virtue of 2.3-fold increase in permeability and 2.2-fold increase in selectivity compared to pure 6FDA-DAM. The superior performance to those of most relevant reported MMMs demonstrates that the Cu(I) coordinated COF is an excellent candidate material for C3 H6 separation membranes.
RESUMO
HIV-1 reverse transcription initiates at the primer binding site (PBS) in the viral genomic RNA (gRNA). Although the structure of the PBS-segment undergoes substantial rearrangement upon tRNALys3 annealing, the proper folding of the PBS-segment during gRNA packaging is important as it ensures loading of beneficial host factors. DHX9/RNA helicase A (RHA) is recruited to gRNA to enhance the processivity of reverse transcriptase. Because the molecular details of the interactions have yet to be defined, we solved the solution structure of the PBS-segment preferentially bound by RHA. Evidence is provided that PBS-segment adopts a previously undefined adenosine-rich three-way junction structure encompassing the primer activation stem (PAS), tRNA-like element (TLE) and tRNA annealing arm. Disruption of the PBS-segment three-way junction structure diminished reverse transcription products and led to reduced viral infectivity. Because of the existence of the tRNA annealing arm, the TLE and PAS form a bent helical structure that undergoes shape-dependent recognition by RHA double-stranded RNA binding domain 1 (dsRBD1). Mutagenesis and phylogenetic analyses provide evidence for conservation of the PBS-segment three-way junction structure that is preferentially bound by RHA in support of efficient reverse transcription, the hallmark step of HIV-1 replication.
Assuntos
RNA Helicases DEAD-box/química , HIV-1/química , Proteínas de Neoplasias/química , RNA Viral/química , Transcrição Reversa/genética , Replicação Viral/genética , Regiões 5' não Traduzidas , Sítios de Ligação/genética , Linhagem Celular , HIV-1/genética , HIV-1/patogenicidade , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Filogenia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , RNA Viral/genéticaRESUMO
Gas separation efficiency of covalent organic framework (COF) membrane can be greatly elevated through precise functionalization. A pair-functionalized COF membrane of 1,3,5-triformylphloroglucinol (TP) and isoquinoline-5,8-diamine (IQD) monomers in two and three nodes is designed and synthesized. TP-IQD is crystallized in a two-dimensional structure with a pore size of 6.5â Å and a surface area of 289â m2 g-1 . This COF possesses N-O paired groups which cooperatively interact with C2 H2 instead of C2 H4 . TP-IQD nanosheets of ≈10â µm in width and ≈4â nm in thickness are prepared by mechanical exfoliation; they are further processed with 6FDA-ODA polymer into a hybrid membrane. High porosity and functionality pair of TP-IQD offer the membrane with significantly increased C2 H2 permeability and C2 H2 /C2 H4 selectivity which are 160 % and 430 % higher of pure 6FDA-ODA. The boosted performance demonstrates high efficiency of the pair-functionality strategy for the synthesis of separation-led COFs.
RESUMO
The molecular state is crucial for precise gas separation using a zeolite membrane, yet the state control remains a big challenge. Herein, we report a NO2 dimerization facilitated high performance SO2/NO2 separation on a SSZ-13 zeolite membrane. The NO2 dimerization is triggered by temperature and pressure to form N2O4 with big molecular size, and N2O4 diffusion into the zeolite pore is inhibited on the basis of size exclusion, leading to high separation selectivity. Consequently, SO2 rather than NO2 preferentially permeates through the SSZ-13 membrane with a high SO2 permeance of 2 × 10-7 mol m-2 s-1 Pa-1 and high SO2/NO2 separation factor of 22, â¼50-fold of that measured without dimerization. The dimerization effect for SO2/NO2 separation prevails in other small-pore zeolites such as NaA. This advanced function is revealed through membrane separation using single and mixture gases.
RESUMO
NO2 and SO2, as valuable chemical feedstock, are worth being recycled from flue gases. The separation of NO2 and SO2 is a key process step to enable practical deployment. This work proposes SO2 separation from NO2 using chabazite zeolite (SSZ-13) membranes and provides insights into the feasibility and advantages of this process using molecular simulation. Grand canonical ensemble Monte Carlo and equilibrium molecular dynamics methods were respectively adopted to simulate the adsorption equilibria and diffusion of SO2, NO2, and N2O4 on SSZ-13 at varying Si/Al (1, 5, 11, 71, +∞), temperatures (248-348 K), and pressures (0-100 kPa). The adsorption capacity and affinity (SO2 > N2O4 > NO2) demonstrated strong competitive adsorption of SO2 based on dual-site interactions and significant reduction in NO2 adsorption due to dimerization in the ternary gas mixture. The simulated order of diffusivity (NO2 > SO2 > N2O4) on SSZ-13 demonstrated rapid transport of NO2, strong temperature dependence of SO2 diffusion, and the impermeability of SSZ-13 to N2O4. The membrane permeability of each component was simulated, rendering a SO2/NO2 membrane separation factor of 26.34 which is much higher than adsorption equilibrium (6.9) and kinetic (2.2) counterparts. The key role of NO2-N2O4 dimerization in molecular sieving of SO2 from NO2 was addressed, providing a facile membrane separation strategy at room temperature.
RESUMO
RATIONALE: Trimeric intracellular cation (TRIC)-A and B are distributed to endoplasmic reticulum/sarcoplasmic reticulum intracellular Ca2+ stores. The crystal structure of TRIC has been determined, confirming the homotrimeric structure of a potassium channel. While the pore architectures of TRIC-A and TRIC-B are conserved, the carboxyl-terminal tail (CTT) domains of TRIC-A and TRIC-B are different from each other. Aside from its recognized role as a counterion channel that participates in excitation-contraction coupling of striated muscles, the physiological function of TRIC-A in heart physiology and disease has remained largely unexplored. OBJECTIVE: In cardiomyocytes, spontaneous Ca2+ waves, triggered by store overload-induced Ca2+ release mediated by the RyR2 (type 2 ryanodine receptor), develop extrasystolic contractions often associated with arrhythmic events. Here, we test the hypothesis that TRIC-A is a physiological component of RyR2-mediated Ca2+ release machinery that directly modulates store overload-induced Ca2+ release activity via CTT. METHODS AND RESULTS: We show that cardiomyocytes derived from the TRIC-A-/- (TRIC-A knockout) mice display dysregulated Ca2+ movement across sarcoplasmic reticulum. Biochemical studies demonstrate a direct interaction between CTT-A and RyR2. Modeling and docking studies reveal potential sites on RyR2 that show differential interactions with CTT-A and CTT-B. In HEK293 (human embryonic kidney) cells with stable expression of RyR2, transient expression of TRIC-A, but not TRIC-B, leads to apparent suppression of spontaneous Ca2+ oscillations. Ca2+ measurements using the cytosolic indicator Fura-2 and the endoplasmic reticulum luminal store indicator D1ER suggest that TRIC-A enhances Ca2+ leak across the endoplasmic reticulum by directly targeting RyR2 to modulate store overload-induced Ca2+ release. Moreover, synthetic CTT-A peptide facilitates RyR2 activity in lipid bilayer reconstitution system, enhances Ca2+ sparks in permeabilized TRIC-A-/- cardiomyocytes, and induces intracellular Ca2+ release after microinjection into isolated cardiomyocytes, whereas such effects were not observed with the CTT-B peptide. In response to isoproterenol stimulation, the TRIC-A-/- mice display irregular ECG and develop more fibrosis than the WT (wild type) littermates. CONCLUSIONS: In addition to the ion-conducting function, TRIC-A functions as an accessory protein of RyR2 to modulate sarcoplasmic reticulum Ca2+ handling in cardiac muscle.
Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Cardiotônicos/farmacologia , Eletrocardiografia/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fibrose/genética , Fibrose/fisiopatologia , Células HEK293 , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Canais Iônicos/química , Canais Iônicos/genética , Isoproterenol/farmacologia , Camundongos Knockout , Simulação de Acoplamento Molecular , Miocárdio/citologia , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismoRESUMO
Here, a Y(III)-based metal-organic framework, JLU-MOF112 {[Y3(µ3-O)2(µ3-OH)(H2O)2(BTCTBA)2]·2[(CH3)2NH2]·5DMF·C6H5Cl·4H2O}, has been successfully synthesized under solvothermal conditions. JLU-MOF112 was constructed with amide-functionalized tricarboxylate ligands and Y(III)-based infinite chains, where the Y3 repeating units are arranged in a trans order. The overall framework could be viewed as a novel (3,5)-connected net with two types of channels along the [100] and [010] directions. JLU-MOF112 possesses a large BET surface area (1553 m2 g-1), a permanent pore volume (0.67 cm3 g-1), and outstanding thermal and chemical stability, which give JLU-MOF112 potential for the purification of natural gas, especially the equimolar separation of C3H8/CH4 with a high selectivity of 176. In addition, benefiting from the amide functional groups as Brønsted basic sites and the exposure of open metal sites as Lewis acid sites after activation, JLU-MOF112 can serve as a high-efficiency heterogeneous catalyst for Knoevenagel condensation by the reactions of malononitrile with benzaldehyde (yield of 98%, turnover number of 392, and turnover frequency of 3.27 min-1) and diverse aldehyde compounds. A rational mechanism was put forward that the Knoevenagel condensation was catalyzed by the synergistic effect of the Lewis acid sites and Brønsted basic sites, engendering the polarization of the carbonyl groups and the deprotonation of the methylene groups for nucleophilic attack.
RESUMO
Predicting protein-peptide complex structures is crucial to the understanding of a vast variety of peptide-mediated cellular processes and to peptide-based drug development. Peptide flexibility and binding mode ranking are the two major challenges for protein-peptide complex structure prediction. Peptides are highly flexible molecules, and therefore, brute-force modeling of peptide conformations of interest in protein-peptide docking is beyond current computing power. Inspired by the fact that the protein-peptide binding process is like protein folding, we developed a novel strategy, named MDockPeP2, which tries to address these challenges using physicochemical information embedded in abundant monomeric proteins with an exhaustive search strategy, in combination with an integrated global search and a local flexible minimization method. Only the peptide sequence and the protein crystal structure are required. The method was systemically assessed using a newly constructed structural database of 89 nonredundant protein-peptide complexes with the peptide sequence length ranging from 5 to 29 in which about half of the peptides are longer than 15 residues. MDockPeP2 yielded a total success rate of 58.4% (70.8, 79.8%) for the bound docking (i.e., with the bound receptor and fully flexible peptides) and 19.0% (44.8, 70.7%) for the challenging unbound docking when top 10 (100, 1000) models were considered for each prediction. MDockPeP2 achieved significantly higher success rates on two other datasets, peptiDB and LEADS-PEP, which contain only short- and medium-size peptides (≤ 15 residues). For peptiDB, our method obtained a success rate of 62.0% for the bound docking and 35.9% for the unbound docking when the top 10 models were considered. For LEADS-PEP, MDockPeP2 achieved a success rate of 69.8% when the top 10 models were considered. The program is available at https://zougrouptoolkit.missouri.edu/mdockpep2/download.html.
Assuntos
Peptídeos , Proteínas , Sítios de Ligação , Simulação de Acoplamento Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteínas/químicaRESUMO
Prostate-specific membrane antigen (PSMA) is a well-characterized tumor marker associated with prostate cancer and neovasculature of most solid tumors. PSMA-specific ligands are thus being developed to deliver imaging or therapeutic agents to cancer cells. Here, we report on a crystal structure of human PSMA in complex with A9g, a 43-bp PSMA-specific RNA aptamer, that was determined to the 2.2 Å resolution limit. The analysis of the PSMA/aptamer interface allows for identification of key interactions critical for nanomolar binding affinity and high selectivity of A9g for human PSMA. Combined with in silico modeling, site-directed mutagenesis, inhibition experiments and cell-based assays, the structure also provides an insight into structural changes of the aptamer and PSMA upon complex formation, mechanistic explanation for inhibition of the PSMA enzymatic activity by A9g as well as its ligand-selective competition with small molecules targeting the internal pocket of the enzyme. Additionally, comparison with published protein-RNA aptamer structures pointed toward more general features governing protein-aptamer interactions. Finally, our findings can be exploited for the structure-assisted design of future A9g-based derivatives with improved binding and stability characteristics.
Assuntos
Antígenos de Superfície/química , Aptâmeros de Nucleotídeos/química , Glutamato Carboxipeptidase II/química , Biomarcadores Tumorais/química , Células HEK293 , Humanos , Ligantes , Masculino , Estrutura Molecular , Células PC-3 , Neoplasias da Próstata/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre ProteínasRESUMO
RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit RT in enzymatic and viral replication assays. Some aptamers inhibit RT from only a few viral clades, while others show broad-spectrum inhibition. Biophysical determinants of recognition specificity are poorly understood. We investigated the interface between HIV-1 RT and a broad-spectrum UCAA-family aptamer. SAR and hydroxyl radical probing identified aptamer structural elements critical for inhibition and established the role of signature UCAA bulge motif in RT-aptamer interaction. HDX footprinting on RT ± aptamer shows strong contacts with both subunits, especially near the C-terminus of p51. Alanine scanning revealed decreased inhibition by the aptamer for mutants P420A, L422A and K424A. 2D proton nuclear magnetic resonance and SAXS data provided constraints on the solution structure of the aptamer and enable computational modeling of the docked complex with RT. Surprisingly, the aptamer enhanced proteolytic cleavage of precursor p66/p66 by HIV-1 protease, suggesting that it stabilizes the productive conformation to allow maturation. These results illuminate features at the RT-aptamer interface that govern recognition specificity by a broad-spectrum antiviral aptamer, and they open new possibilities for accelerating RT maturation and interfering with viral replication.
Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Protease de HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , Aptâmeros de Nucleotídeos/química , Simulação de Acoplamento Molecular , Mutagênese/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Multimerização Proteica , Inibidores da Transcriptase Reversa/farmacologiaRESUMO
The development of neuromorphic computation faces the appreciable challenge of implementing hardware with energy consumption on the level of a femtojoule per synaptic event to be comparable with the energy consumption of human brain. Controllable ultrathin conductive filaments are needed to achieve such extremely low energy consumption in memristive synapses but their formation is difficult to control owing to their stochastic morphology and unexpected overgrowth. Herein, a zeolite-based memristive synapse is demonstrated for the first time, in which Ag exchange in the sub-nanometer pore closely resembles synaptic Ca2+ dynamics across biomembrane channel. Particularly, the confined ultrasmall pore and low Ag ion migration barrier give the zeolite-based memristive synapse ultralow energy consumption below 10 fJ per synaptic spike, on par with the biological counterpart. Experimental results reveal that the gradual memristive effect is attributed to the dimension modulation of Ag clusters. In addition to emulating inherent cognitive functions through electrical stimulations, the experience-dependent transition of short-term plasticity to long-term plasticity using a chemical modulation method is achieved by treating the initial Ag quantity as a learning experience. The proposed memristors can be used to develop highly efficient memristive neural networks and are considered as a candidate for application in neuromorphic computation.
Assuntos
Zeolitas , Encéfalo , Condutividade Elétrica , Humanos , Redes Neurais de Computação , SinapsesRESUMO
The molecular similarity principle has achieved great successes in the field of drug design/discovery. Existing studies have focused on similar ligands, while the behaviors of dissimilar ligands remain unknown. In this study, we developed an intercomparison strategy in order to compare the binding modes of ligands with different molecular structures. A systematic analysis of a newly constructed protein-ligand complex structure dataset showed that ligands with similar structures tended to share a similar binding mode, which is consistent with the Molecular Similarity Principle. More importantly, the results revealed that dissimilar ligands can also bind in a similar fashion. This finding may open another avenue for drug discovery. Furthermore, a template-guiding method was introduced for predicting protein-ligand complex structures. With the use of dissimilar ligands as templates, our method significantly outperformed the traditional molecular docking methods. The newly developed template-guiding method was further applied to recent CELPP studies.
Assuntos
Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Cristalização , Bases de Dados de Proteínas , Desenho de Fármacos/métodos , Descoberta de Drogas/métodos , Ligantes , Ligação Proteica , Conformação ProteicaRESUMO
CAPRI challenges offer a variety of blind tests for protein-protein interaction prediction. In CAPRI Rounds 38-45, we generated a set of putative binding modes for each target with an FFT-based docking algorithm, and then scored and ranked these binding modes with a proprietary scoring function, ITScorePP. We have also developed a novel web server, Rebipp. The algorithm utilizes information retrieval to identify relevant biological information to significantly reduce the search space for a particular protein. In parallel, we have also constructed a GPU-based docking server, MDockPP, for protein-protein complex structure prediction. Here, the performance of our protocol in CAPRI rounds 38-45 is reported, which include 16 docking and scoring targets. Among them, three targets contain multiple interfaces: Targets 124, 125, and 136 have 2, 4, and 3 interfaces, respectively. In the predictor experiments, we predicted correct binding modes for nine targets, including one high-accuracy interface, six medium-accuracy binding modes, and six acceptable-accuracy binding modes. For the docking server prediction experiments, we predicted correct binding modes for eight targets, including one high-accuracy, three medium-accuracy, and five acceptable-accuracy binding modes.
Assuntos
Algoritmos , Simulação de Acoplamento Molecular , Oligossacarídeos/química , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Mineração de Dados , Humanos , Ligantes , Oligossacarídeos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína , TermodinâmicaRESUMO
We present a nonredundant benchmark, coined PepPro, for testing peptide-protein docking algorithms. Currently, PepPro contains 89 nonredundant experimentally determined peptide-protein complex structures, with peptide sequence lengths ranging from 5 to 30 amino acids. The benchmark covers peptides with distinct secondary structures, including helix, partial helix, a mixture of helix and ß-sheet, ß-sheet formed through binding, ß-sheet formed through self-folding, and coil. In addition, unbound proteins' structures are provided for 58 complexes and can be used for testing the ability of a docking algorithm handling the conformational changes of proteins during the binding process. PepPro should benefit the docking community for the development and improvement of peptide docking algorithms. The benchmark is available at http://zoulab.dalton.missouri.edu/PepPro_benchmark. © 2019 Wiley Periodicals, Inc.
Assuntos
Química Computacional , Conjuntos de Dados como Assunto , Peptídeos/química , Proteínas/química , Sequência de Aminoácidos , Simulação de Acoplamento Molecular , Conformação ProteicaRESUMO
BACKGROUND: Fatty acid synthase (FASN) is highly expressed in various types of cancer and has an important role in carcinogenesis and metastasis. To clarify the mechanisms of FASN in liver cancer invasion and metastasis, the FASN protein interaction network in liver cancer was identified by targeted proteomic analysis. METHODS: Wound healing and Transwell assays was performed to observe the effect of FASN during migration and invasion in liver cancer. Isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to identify proteins interacting with FASN in HepG2 cells. Differential expressed proteins were validated by co-immunoprecipitation, western blot analyses and confocal microscopy. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to demonstrate the mechanism of FASN regulating metastasis. RESULTS: FASN knockdown inhibited migration and invasion of HepG2 and SMMC7721 cells. A total of, 79 proteins interacting with FASN were identified. Additionally, gene ontology term enrichment analysis indicated that the majority of biological regulation and cellular processes that the FASN-interacting proteins were associated with. Co-precipitation and co-localization of FASN with fascin actin-bundling protein 1 (FSCN1), signal-induced proliferation-associated 1 (SIPA1), spectrin ß, non-erythrocytic 1 (SPTBN1) and CD59 were evaluated. Knockdown of FASN in liver cancer reduced the expression of FSCN1, SIPA1, SPTBN1 and CD59. Furthermore, inhibition of FASN, FSCN1 or SPTBN1 expression in liver cancer resulted in alterations of epithelial-mesenchymal transition (EMT)-associated markers E-cadherin, N-cadherin, vimentin and transcription factors, Snail and Twist, at the mRNA level, and changes in matrix metallopeptidase (MMP)-2 and MMP-9 protein expression. CONCLUSION: The results suggested that the FASN-interacting protein network produced by iTRAQ-based proteomic analyses may be involved in regulating invasion and metastasis in liver cancer by influencing EMT and the function of MMPs.