Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(37): e2311659, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38747005

RESUMO

The performance consistency of the gas sensor is strongly dependent on the interface binding between the sensitive materials and the electrodes. Traditional powder coating methods can inevitably lead to differences in terms of substrate-film interface interaction and device performance, affecting the stability and lifetime. Thus, efficient growth of sensitive materials on device substrates is crucial and essential to enhance the sensing performance, especially for stability. Herein, hierarchically ordered macro/mesoporous WO3 films are in situ synthesized on the electrode via a facile soft/hard dual-template strategy. Orderly arrayed uniform polystyrene (PS) microspheres with tailored size (ca. 1.2 µm) are used as a hard template, and surfactant Pluronic F127 as a soft template can co-assemble with tungsten precursor into ordered mesostructure in the interstitials of PS colloidal crystal induced by solvent evaporation. Benefiting from its rich porosity and high stability, the macro/mesoporous WO3-based sensor shows high sensitivity (Rair/Rgas = 307), fast response/recovery speed (5/9 s), and excellent selectivity (SH2S/Smax > 7) toward 50 ppm H2S gas (a biomarker for halitosis). Significantly, the sensors exhibit an extended service life with a negligible change in sensing performance within 60 days. This lab-on-device synthesis provides a platform method for constructing stable nanodevices with good consistency and high stability, which are highly desired for developing high-performance sensors.

2.
Small ; 19(45): e2304631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37438544

RESUMO

Chemiluminescence immunoassay exhibits high sensitivity and signal-to-noise ratio, thus attracting great attention in the early diagnosis and dynamic monitoring of diseases. However, the collection of conventional flash-type chemiluminescence signal (<5 s) relies heavily on automatic sampling and reading instrument. Herein, a novel core-satellite multifunctional chemiluminescence immunosensor is designed for the efficient enrichment and highly sensitive determination of cancer biomarker carcinoembryonic antigen (CEA) with enhanced and long-lasting output signal that can be conveniently recorded by a simple microplate plate reading instrument. Anti-CEA monoclonal antibody 2 (Ab2) modified Fe3 O4 @SiO2 microspheres (Fe3 O4 @SiO2 -Ab2, 370 nm in diameter) are synthesized as the core for selectively capturing and enriching target CEA in solution, and anti-human CEA monoclonal antibody 1 (Ab1) and horseradish peroxidase (HRP) co-immobilized dendritic large-mesoporous silica nanospheres (MSNs-HRP/Ab1, 80 nm in diameter, pore size: 17 nm) are synthesized as the satellite for efficient immunological recognition and signal amplification. The as-designed core-satellite magnetic chemiluminescence immunosensors exhibit a broad linear range of 0.01-20 ng mL-1 and a low detection limit of 3.0 pg mL-1 for the convenient, highly specific, and sensitive determination of CEA in human serum. Such core-satellite chemiluminescence immunosensors are expected to act as a powerful tool for in vitro detection of various biomarkers, overcome the defect of conventional chemiluminescence relying heavily on expensive and bulky automatic instruments and popularize chemiluminescence analysis to primary medical institutions and remote areas.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Biomarcadores Tumorais , Antígeno Carcinoembrionário , Imunoensaio , Luminescência , Dióxido de Silício , Anticorpos Monoclonais , Limite de Detecção , Ouro , Técnicas Eletroquímicas
3.
Small ; 19(32): e2301011, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066705

RESUMO

Site-selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx ) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site-selective modification strategy utilizing poly(ethylene oxide)-block-polystyrene (PEO-b-PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO-b-PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2 /WO3-x framework, and meanwhile FeOx nanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal-support interaction between FeOx and Pt. The selective modification of Pt NPs with FeOx makes the Pt NPs present an electron-deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2 /WO3-x -FeOx /Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).

4.
Small ; 19(39): e2302327, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259638

RESUMO

Methane (CH4 ), as the vital energy resource and industrial chemicals, is highly flammable and explosive for concentrations above the explosive limit, triggering potential risks to personal and production safety. Therefore, exploiting smart gas sensors for real-time monitoring of CH4 becomes extremely important. Herein, the Pt-Pd nanoalloy functionalized mesoporous SnO2 microspheres (Pt-Pd/SnO2 ) were synthesized, which show uniform diameter (≈500 nm), high surface area (40.9-56.5 m2 g-1 ), and large mesopore size (8.8-15.8 nm). The highly dispersed Pt-Pd nanoalloys are confined in the mesopores of SnO2 , causing the generation ofoxygen defects and increasing the carrier concentration of sensitive materials. The representative Pt1 -Pd4 /SnO2 exhibits superior CH4 sensing performance with ultrahigh response (Ra /Rg = 21.33 to 3000 ppm), fast response/recovery speed (4/9 s), as well as outstanding stability. Spectroscopic analyses imply that such an excellent CH4 sensing process involves the fast conversion of CH4 into formic acid and CO intermediates, and finally into CO2 . Density functional theory (DFT) calculations reveal that the attractive covalent bonding interaction and rapid electron transfer between the Pt-Pd nanoalloys and SnO2 support, dramatically promote the orbital hybridization of Pd4 sites and adsorbed CH4 molecules, enhancing the catalytic activation of CH4 over the sensing layer.

5.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724782

RESUMO

Colloidal delivery systems are widely used in the food industry to enhance the dispersibility, stability, efficacy, or bioavailability. However, when exposed to the high temperature, delivery systems are often prone to degradation, which limits its application in thermal processing. In this paper, the effects of thermal processing on the performance of traditional protein-based or starch-based delivery systems are firstly described, including the molecular structure changes of proteins, starches or lipids, and the degradation of embedded substances. These effects are unfavorable to the application of the delivery system in thermal processing. Then, strategies of improving the heat resistance of food grade colloid delivery system and their use in frying, baking and cooking food are mainly introduced. The heat resistance of the delivery system can be improved by a variety of strategies, including the development of new heat-resistant materials, the addition of heat-resistant coatings to the surface of delivery systems, the cross-linking of proteins or starches using cross-linking agents, the design of particle structures, the use of physical means such as ultrasound, or the optimization of the ingredient formula. These strategies will help to expand the application of heat-resistant delivery systems so that they can be used in real thermal processing.

6.
Small ; 17(39): e2103176, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405523

RESUMO

2D transition metal oxides (TMO) nanosheets have attracted considerable attention in both fundamental research and practical applications. Herein, a convenient programmable and scalable carbonate crystals templating synthesis is developed to produce high-quality self-hybrid TMO nanosheets (Si-WO3- x , Tax Oy , Mnx Oy ) and their respective polymetallic oxide hybrid nanosheets with tunable composition, low-cost and high-yield. Taking tungsten oxide nanosheets as example, silicotungstic acid precursor is in situ converted into tungsten oxide nanosheets like scales on the surface of calcium carbonate crystals through the simple soaking-drying-calcination process, and after selectively dissolving calcium carbonate by etching, the dispersive tungsten oxide nanosheets with unique self-hybrid Si-doped h-WO3 /ε-WO3 /WO2 compositions are obtained, which show excellent acetone gas-sensing performances at low temperatures. This carbonate-template method opens up the possibility to economically produce various functional TMO nanosheets with specific compositions for diverse applications.

7.
Nat Mater ; 19(2): 203-211, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31792425

RESUMO

Assemblies of metal oxide nanowires in 3D stacks can enable the realization of nanodevices with tailored conductivity, porous structure and a high surface area. Current fabrication methods require complicated multistep procedures that involve the initial preparation of nanowires followed by manual assembly or transfer printing, and thus lack synthesis flexibility and controllability. Here we report a general synthetic orthogonal assembly approach to controllably construct 3D multilayer-crossed metal oxide nanowire arrays. Taking tungsten oxide semiconducting nanowires as an example, we show the spontaneous orthogonal packing of composite nanorods of poly(ethylene oxide)-block-polystyrene and silicotungstic acid; the following calcination gives rise to 3D cross-stacked nanowire arrays of Si-doped metastable ε-phase WO3. This nanowire stack framework was also tested as a gas detector for the selective sensing of acetone. By using other polyoxometallates, this fabrication method for woodpile-like 3D nanostructures can also be generalized to different doped metal oxide nanowires, which provides a way to manipulate their physical properties for various applications.

8.
Chem Soc Rev ; 49(4): 1173-1208, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31967137

RESUMO

Mesoporous metal-based materials (MMBMs) have received unprecedented attention in catalysis, sensing, and energy storage and conversion owing to their unique electronic structures, uniform mesopore size and high specific surface area. In the last decade, great progress has been made in the design and application of MMBMs; in particular, many novel assembly engineering methods and strategies based on amphiphilic block copolymers as structure-directing agents have also been developed for the "bottom-up" construction of a variety of MMBMs. Development of MMBMs is therefore of significant importance from both academic and practical points of view. In this review, we provide a systematic elaboration of the molecular assembly methods and strategies for MMBMs, such as tuning the driving force between amphiphilic block copolymers and various precursors (i.e., metal salts, nanoparticles/clusters and polyoxometalates) for pore characteristics and physicochemical properties. The structure-performance relationship of MMBMs (e.g., pore size, surface area, crystallinity and crystal structure) based on various spectroscopy analysis techniques and density functional theory (DFT) calculation is discussed and the influence of the surface/interfacial properties of MMBMs (e.g., active surfaces, heterojunctions, binding sites and acid-base properties) in various applications is also included. The prospect of accurately designing functional mesoporous materials and future research directions in the field of MMBMs is pointed out in this review, and it will open a new avenue for the inorganic-organic assembly in various fields.

9.
Acc Chem Res ; 52(3): 714-725, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30829473

RESUMO

In recent years, rational design of ordered mesoporous metal oxides, especially metal oxide semiconductors with adjustable pore architecture and framework compositions, has aroused extensive research interest owing to their unique electronic structures, long-range ordered porous framework, uniform mesopore size, and high specific surface area. Research on mesoporous materials has been booming in the past 30 years, and many synthesis methods have been developed, such as templating methods based on amphiphilic copolymers as soft templates or mesoporous carbon/silica as hard templates, respectively. Soft-templating synthesis has been considered as one of the most efficient and flexible methods in designing ordered mesoporous materials through the controllable interfacial induced coassembly process. However, most commercial amphiphilic copolymers, such as poly(ethylene oxide)- b-poly(propylene oxide) based Pluronic-type ones, suffer the drawback of poor thermal stability, because they are too easy to be decomposed even in inert atmosphere. Therefore, they are difficult to support the structures of mesoporous metal oxides under high calcination temperatures (>400 °C). To solve this challenge, we designed new amphiphilic block copolymers with high content of sp2-hybridized carbon in the hydrophobic segments that were relatively stable and could be in situ converted into residual carbon to support the mesoporous structure, via living free radical polymerization. We developed a variety of novel synthesis methods based on sp2-hybridized carbon-containing block copolymer, such as ligand-assisted assembly and resol-assisted assembly strategies, achieving a controllable and versatile synthesis of mesoporous semiconducting metal oxides with excellent gas sensing performance. In this Account, we first outline the features of sp2-hybridized carbon-containing block copolymers synthesized via living free radical polymerization, particularly their pyrolysis behavior in converting into residual carbon. Combining the solvent evaporation induced coassembly and the carbon-supported crystallization strategies, we realized the rational design of various ordered mesoporous semiconducting metal oxides (e.g., WO3, SnO2, Co3O4, In2O3, TiO2, ZnO) and the regulation of their architectural features. To overcome the fast hydrolysis rate of metal precursors and weak interaction between block copolymers and metal precursors, we developed efficient ligand-assisted (e.g., acetylacetone and acetic acid) coassembly and resol-assisted coassembly methods to retard hydrolysis behavior and enhance the interaction via hydrogen bonds, covalent bonds, electrostatic interactions, etc. We also highlight the applications of these ordered mesoporous semiconducting metal oxides of both n-type and p-type in gas sensing fields, and they show tremendous sensing performance due to their abundant active sites on electron depletion layer and rapid gas diffusion via accessible pore channels. Finally, on the basis of the classic surface-electron depletion layer model, we elucidated in depth the surface catalytic reactions between the target gas molecules and the activated species (e.g., the adsorbed oxygen species) in the surface of mesoporous metal oxides during sensing process. These newly developed soft-templating synthesis methods that rely on sp2-hybridized carbon-containing block copolymers will open a new avenue for the design and application of ordered mesoporous semiconducting metal oxides in various fields.

10.
Small ; 15(39): e1903058, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389182

RESUMO

Active and stable catalysts are highly desired for converting harmful substances (e.g., CO, NOx ) in exhaust gases of vehicles into safe gases at low exhaust temperatures. Here, a solvent evaporation-induced co-assembly process is employed to design ordered mesoporous Cex Zr1- x O2 (0 ≤ x ≤ 1) solid solutions by using high-molecular-weight poly(ethylene oxide)-block-polystyrene as the template. The obtained mesoporous Cex Zr1- x O2 possesses high surface area (60-100 m2 g-1 ) and large pore size (12-15 nm), enabling its great capacity in stably immobilizing Pt nanoparticles (4.0 nm) without blocking pore channels. The obtained mesoporous Pt/Ce0.8 Zr0.2 O2 catalyst exhibits superior CO oxidation activity with a very low T100 value of 130 °C (temperature of 100% CO conversion) and excellent stability due to the rich lattice oxygen vacancies in the Ce0.8 Zr0.2 O2 framework. The simulated catalytic evaluations of CO oxidation combined with various characterizations reveal that the intrinsic high surface oxygen mobility and well-interconnected pore structure of the mesoporous Pt/Ce0.8 Zr0.2 O2 catalyst are responsible for the remarkable catalytic efficiency. Additionally, compared with mesoporous Pt/Cex Zr1- x O2 -s with small pore size (3.8 nm), ordered mesoporous Pt/Cex Zr1- x O2 not only facilitates the mass diffusion of reactants and products, but also provides abundant anchoring sites for Pt nanoparticles and numerous exposed catalytically active interfaces for efficient heterogeneous catalysis.

11.
Small ; 15(46): e1904240, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31550086

RESUMO

Controllable and efficient synthesis of noble metal/transition-metal oxide (TMO) composites with tailored nanostructures and precise components is essential for their application. Herein, a general mercaptosilane-assisted one-pot coassembly approach is developed to synthesize ordered mesoporous TMOs with agglomerated-free noble metal nanoparticles, including Au/WO3 , Au/TiO2 , Au/NbOx , and Pt/WO3 . 3-mercaptopropyl trimethoxysilane is applied as a bridge agent to cohydrolyze with metal oxide precursors by alkoxysilane moieties and interact with the noble metal source (e.g., HAuCl4 and H2 PtCl4 ) by mercapto (SH) groups, resulting in coassembly with poly(ethylene oxide)-b-polystyrene. The noble metal decorated TMO materials exhibit highly ordered mesoporous structure, large pore size (≈14-20 nm), high specific surface area (61-138 m2 g-1 ), and highly dispersed noble metal (e.g., Au and Pt) nanoparticles. In the system of Au/WO3 , in situ generated SiO2 incorporation not only enhances their thermal stability but also induces the formation of ε-phase WO3 promoting gas sensing performance. Owning to its specific compositions and structure, the gas sensor based on Au/WO3 materials possess enhanced ethanol sensing performance with a good response (Rair /Rgas = 36-50 ppm of ethanol), high selectivity, and excellent low-concentration detection capability (down to 50 ppb) at low working temperature (200 °C).

12.
Environ Sci Technol ; 50(7): 3658-67, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26978487

RESUMO

Graphene oxide (GO) has attracted considerable attention because of its remarkable enhanced adsorption and multifunctional properties. However, the toxic properties of GO nanosheets released into the environment could lead to the instability of biological system. In aqueous phase, GO may interact with fine mineral particles, such as chloridion intercalated nanocrystallined Mg/Al layered double hydroxides (LDH-Cl) and nanocrystallined Mg/Al LDHs (LDH-CO3), which are considered as coagulant molecules for the coagulation and removal of GO from aqueous solutions. Herein the coagulation of GO on LDHs were studied as a function of solution pH, ionic strength, contact time, temperature and coagulant concentration. The presence of LDH-Cl and LDH-CO3 improved the coagulation of GO in solution efficiently, which was mainly attributed to the surface oxygen-containing functional groups of LDH-Cl and LDH-CO3 occupying the binding sites of GO. The coagulation of GO by LDH-Cl and LDH-CO3 was strongly dependent on pH and ionic strength. Results of theoretical DFT calculations indicated that the coagulation of GO on LDHs was energetically favored by electrostatic interactions and hydrogen bonds, which was further evidenced by FTIR and XPS analysis. By integrating the experimental results, it was clear that LDH-Cl could be potentially used as a cost-effective coagulant for the elimination of GO from aqueous solutions, which could efficiently decrease the potential toxicity of GO in the natural environment.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Hidróxido de Alumínio/química , Grafite/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidróxido de Magnésio/química , Microscopia Eletrônica de Varredura , Óxidos/química , Espectroscopia Fotoeletrônica , Soluções/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação
13.
Environ Sci Technol ; 50(14): 7290-304, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27331413

RESUMO

The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed.


Assuntos
Recuperação e Remediação Ambiental , Ferro , Íons , Metais Pesados , Poluentes Químicos da Água
14.
Sci Rep ; 14(1): 25278, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455870

RESUMO

When a hydropower unit operates in a sediment-laden river, the sediment accelerates hydro-turbine wear, leading to efficiency loss or even shutdown. Therefore, wear fault diagnosis is crucial for its safe and stable operation. A hydro-turbine wear fault diagnosis method based on improved WT (wavelet threshold algorithm) preprocessing combined with IWSO (improved white shark optimizer) optimized CNN-LSTM (convolutional neural network-long-short term memory) is proposed. The improved WT algorithm is utilized to denoise the preprocessing of the original signals. Chaotic mapping, bird flock search, and cosine elite variation strategies are introduced to enhance the WSO algorithm's robust performance, and the CNN-LSTM model's hyperparameters are optimized using the IWSO algorithm to improve the diagnostic performance. The experimental results show that the accuracy of the proposed method reaches 96.2%, which is 8.9% higher than that of the IWSO-CNN-LSTM model without denoising. The study also found that the diagnostic accuracy of hydro-turbine wear faults increased with increasing sediment concentration in the water. This study can supplement the existing hydro-turbine condition monitoring and fault diagnosis system. Meanwhile, diagnosing wear faults in hydro-turbines can improve power generation efficiency and quality and minimize resource consumption.

15.
Food Chem ; 458: 140180, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964111

RESUMO

Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.


Assuntos
Probióticos , Probióticos/química , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Animais
16.
ACS Appl Mater Interfaces ; 16(14): 17563-17573, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551503

RESUMO

Hydrogen generation is one of the crucial technologies to realize sustainable energy development, and the design of advanced catalysts with efficient interfacial sites and fast mass transfer is significant for hydrogen evolution. Herein, an in situ coassembly strategy was proposed to engineer a cerium-doped ordered mesoporous titanium oxide (mpCe/TiO2), of which the abundant oxygen vacancies (Ov) and highly exposed active pore walls contribute to good stability of ultrasmall Pt nanoclusters (NCs, ∼ 1.0 nm in diameter) anchored in the uniform mesopores (ca. 20 nm). Consequently, the tailored mpCe/TiO2 with 0.5 mol % Ce-doping-supported Pt NCs (Pt-mpCe/TiO2-0.5) exhibits superior H2 evolution performance toward the water-gas shift reaction with a 0.73 molH2·s-1·molPt-1 H2 evolution rate at 200 °C, which is almost 6-fold higher than the Pt-mpTiO2 (0.13 molH2·s-1·molPt-1 H2). Density functional theory calculations confirm that the structure of Ce-doped TiO2 with Ce coordinated to six O atoms by substituting Ti atoms is thermodynamically favorable without the deformation of Ti-O bonds. The Ov generated by the six O atom-coordinated Ce doping is highly active for H2O dissociation with an energy barrier of 2.18 eV, which is obviously lower than the 2.37 eV for the control TiO2. In comparison with TiO2, the resultant Ce/TiO2 support acts as a superior electron acceptor for Pt NCs and causes electron deficiency at the Pt/support interface with a 0.17 eV downshift of the Pt d-band center, showing extremely obvious electronic metal-support interaction (EMSI). As a result, abundant and hyperactive Ti3+-Ov(-Ce3+)-Ptδ+ interfacial sites are formed to significantly promote the generation of CO2 and H2 evolution. In addition, the stronger EMSI between Pt NCs and mpCe/TiO2-0.5 than that between Pt and mpTiO2 contributes to the superior self-enhanced catalytic performance during the cyclic test, where the CO conversion at 200 °C increases from 72% for the fresh catalyst to 99% for the used one. These findings reveal the subtle relationship between the mesoporous metal oxide-metal composite catalysts with unique chemical microenvironments and their catalytic performance, which is expected to inspire the design of efficient heterogeneous catalysts.

17.
Adv Mater ; 36(36): e2313547, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011781

RESUMO

The straightforward synthesis of noble-metal-nanoparticle-decorated ordered mesoporous transition metal oxides remains a great challenge due to the difficulty of balancing the interactions between precursors and templates. Herein, a solvent-pair-enabled multicomponent coassembly (SPEMC) strategy is developed for straightforward synthesis of noble-metal-nanoparticle-decorated nitrogen-doped ordered mesoporous tungsten oxide (abbreviated as NM/N-mWO3, NM = Pt, Rh, Pd). The amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS) copolymers coassemble with ammonium metatungstate (AMT) clusters and different kinds of hydrophilic noble metal precursors without phase separation. SPEMC synthesis requires no direct interaction between PEO-b-PS and AMT, thus the assembly equilibriums between noble metal precursors and PEO-b-PS can be readily controlled. The obtained NM/N-mWO3 nanocomposites possess ordered mesopores, abundant oxygen vacancies, and metal-metal oxide interfaces. As a result, the Pt/N-mWO3 sensors exhibit superior ammonia sensing performances with high sensitivity, an ultralow limit of detection (51.2 ppb), good selectivity, and long-term stability. Spectroscopic analysis reveals that ammonia is oxidized stepwise to NO, NO2 -, and NO3 - during the sensing process. Moreover, a portable wireless module based on Pt/N-mWO3 sensor can recognize ppm-level concentration of ammonia, which lays a solid foundation for its application in various fields.

18.
Int J Biol Macromol ; 278(Pt 2): 134827, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154680

RESUMO

Three nanoparticles were fabricated for the co-delivery of quercetin and resveratrol. Nanoparticles consisted of a zein and carboxymethyl cellulose assembled using antisolvent precipitation/layer-by-layer deposition method. Nanoparticles contained quercetin in the core and resveratrol in the shell, resveratrol in the core and quercetin in the shell or both quercetin and resveratrol in the core. The particle sizes of nanoparticles were 280.4, 214.8, and 181.8 nm, respectively. Zeta-potential was about -50 mV and PDI was about 0.3. The different positions of polyphenol distribution nanoparticles could reduce the competition between the two polyphenols, the encapsulation rate, loading rate and storage stability reached up to 91.7 %, 5.37 % and 97.1 %, respectively. FT-IR showed that hydrophobic and electrostatic interactions were the main driving forces of nanoparticle assembly. XRD showed that two polyphenols were successfully encapsulated in nanoparticles. TGA showed that distributing the nanoparticles in different layers would enhance thermal stability. TEM and SEM showed that polysaccharides attached to the surface of nanoparticles formed a core-shell structure with uniform particle size. All three nanoparticles could release two polyphenols slowly in simulated gastrointestinal digestion, Korsmeyer-Peppas was the most suitable kinetic release model. Therefore, biopolymer-based nanocarriers can be created to enhance the loading, stability, and bioaccessibility of co-encapsulated nutraceuticals.


Assuntos
Carboximetilcelulose Sódica , Nanopartículas , Tamanho da Partícula , Quercetina , Resveratrol , Zeína , Zeína/química , Resveratrol/química , Quercetina/química , Carboximetilcelulose Sódica/química , Nanopartículas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Cinética , Composição de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Food Res Int ; 187: 114459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763692

RESUMO

Staple foods serve as vital nutrient sources for the human body, and chewiness is an essential aspect of food texture. Age, specific preferences, and diminished eating functions have broadened the chewiness requirements for staple foods. Therefore, comprehending the formation mechanism of chewiness in staple foods and exploring approaches to modulate it becomes imperative. This article reviewed the formation mechanisms and quality control methods for chewiness in several of the most common staple foods (rice, noodles, potatoes and bread). It initially summarized the chewiness formation mechanisms under three distinct thermal processing methods: water medium, oil medium, and air medium processing. Subsequently, proposed some effective approaches for regulating chewiness based on mechanistic changes. Optimizing raw material composition, controlling processing conditions, and adopting innovative processing techniques can be utilized. Nonetheless, the precise adjustment of staple foods' chewiness remains a challenge due to their diversity and technical study limitations. Hence, further in-depth exploration of chewiness across different staple foods is warranted.


Assuntos
Pão , Qualidade dos Alimentos , Oryza , Solanum tuberosum , Humanos , Pão/análise , Mastigação
20.
Int J Biol Macromol ; 276(Pt 2): 133949, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025172

RESUMO

Different methods of starch modification have been proposed to broaden its application. In this study, the effects of ternary mixtures of natural crosslinking agents: chitosan-betaine-vanillin and gelatin-betaine-vanillin on the properties of pea starch were explored. These combinations of substances were selected because they have complementary crosslinking mechanisms. The effects of the ternary crosslinker mixtures on the gelatinization, mechanical properties, thermal stability, and microstructure of pea starch were compared. Both combinations of crosslinkers enhanced the gelatinization viscosity, viscoelasticity, gel hardness, and thermal stability of the pea starch, by an amount that depended on the ratio of the different components in the ternary mixtures. In all cases, the crystal structure of the starch granules disappeared after gelatinization. The modified starch had a more compact and uniform microstructure than the non-modified version, especially when it was crosslinked by vanillin, gelatin, and betaine. The improvement in the gelation properties of the starch were primarily attributed to hydrogen bonding, electrostatic attraction, and Schiff base crosslinking of the various components present. Gelatin enhanced the gel strength more than chitosan, which was probably because of greater hydrogen bonding. Our findings suggest that the properties of starch can be enhanced by adding ternary mixtures of natural crosslinkers.


Assuntos
Benzaldeídos , Betaína , Quitosana , Reagentes de Ligações Cruzadas , Gelatina , Pisum sativum , Amido , Gelatina/química , Amido/química , Quitosana/química , Betaína/química , Benzaldeídos/química , Pisum sativum/química , Reagentes de Ligações Cruzadas/química , Viscosidade , Géis/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa