Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 719
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271485

RESUMO

The aggregation of medin forming aortic medial amyloid is linked to arterial wall degeneration and cerebrovascular dysfunction. Elevated levels of arteriolar medin are correlated with an increased presence of vascular amyloid-ß (Aß) aggregates, a hallmark of Alzheimer's disease (AD) and vascular dementia. The cross-interaction between medin and Aß results in the formation of heterologous fibrils through co-aggregation and cross-seeding processes both in vitro and in vivo. However, a comprehensive molecular understanding of the cross-interaction between medin and Aß-two intrinsically disordered proteins-is critically lacking. Here, we employed atomistic discrete molecular dynamics simulations to systematically investigate the self-association, co-aggregation and also the phenomenon of cross-seeding between these two proteins. Our results demonstrated that both Aß and medin were aggregation prone and their mixture tended to form ß-sheet-rich hetero-aggregates. The formation of Aß-medin hetero-aggregates did not hinder Aß and medin from recruiting additional Aß and medin peptides to grow into larger ß-sheet-rich aggregates. The ß-barrel oligomer intermediates observed in the self-aggregations of Aß and medin were also present during their co-aggregation. In cross-seeding simulations, preformed Aß fibrils could recruit isolated medin monomers to form elongated ß-sheets. Overall, our comprehensive simulations suggested that the cross-interaction between Aß and medin may contribute to their pathological aggregation, given the inherent amyloidogenic tendencies of both medin and Aß. Targeting medin, therefore, could offer a novel therapeutic approach to preserving brain function during aging and AD by improving vascular health.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Simulação de Dinâmica Molecular , Proteínas Amiloidogênicas , Fatores de Risco
2.
Chem Soc Rev ; 53(4): 1769-1788, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269613

RESUMO

The emerging perovskite solar cell (PSC) technology has attracted significant attention due to its superior power conversion efficiency (PCE) among the thin-film photovoltaic technologies. However, the toxicity of lead and poor stability of lead halide materials hinder their commercialization. In this case, after a decade of effort, various categories of lead-free perovskites and perovskite-like materials have been developed, including tin halide perovskites, double perovskites, defect-structured perovskites, and rudorffites. However, the performance of the corresponding devices still falls short of expectations, especially their PCE. The limitations mainly originate from either the unstable lattice structure of these materials, which causes the distortion of their octahedra, or their low dimensionality (e.g., structural and electronic dimensionality)-correlated poor carrier transport and self-trapping effect, accelerating nonradiative recombination. Therefore, understanding the relationship between the structures and performance in these emerging candidates and leveraging these insights to design or modify new lead-free perovskites is of great significance. Herein, we review the variety of dimensionalities in different categories of lead-free perovskites and perovskite-like materials and conclude that dimensionality is an important aspect among the crucial indexes that determine the performance of lead-free PSCs. In addition, we summarize the modulation of both structural and electronic dimensionality, and the corresponding enhanced optoelectronic properties in different categories. Finally, perspectives on the future development of lead-free perovskites and perovskite-like materials for photovoltaic applications are provided. We hope that this review will provide researchers with a concise overview of these emerging materials and help them leverage dimensionality to break the bottleneck in photovoltaic applications.

3.
J Am Chem Soc ; 146(2): 1657-1666, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174875

RESUMO

Perovskite solar cells (PSCs) that incorporate both two-dimensional (2D) and three-dimensional (3D) phases possess the potential to combine the high stability of 2D PSCs with the superior efficiency of 3D PSCs. Here, we demonstrated in situ phase reconstruction of 2D/3D perovskites using a 2D perovskite single-crystal-assisted method. A gradient phase distribution of 2D RP perovskites was formed after spin-coating a solution of the 2D Ruddlesden-Popper (RP) perovskite single crystal, (DFP)2PbI4, onto the 3D perovskite surface, followed by thermal annealing. The resulting film exhibits much reduced trap density, increased carrier mobility, and superior water resistance. As a result, the optimized 2D/3D PSCs achieved a champion efficiency of 24.87% with a high open-circuit voltage (VOC) of 1.185 V. This performance surpasses the control 3D perovskite device, which achieved an efficiency of 22.43% and a VOC of 1.129 V. Importantly, the unencapsulated device demonstrates significantly enhanced operational stability, preserving over 97% of its original efficiency after continuous light irradiation for 1500 h. Moreover, the extrapolated T80 lifetimes surpass 5700 h. These findings pave the way for rational regulation of the gradient phase distribution at the interface between 2D and 3D perovskites by employing 2D RP perovskite crystals to achieve stable and efficient PSCs.

4.
J Am Chem Soc ; 146(20): 14287-14296, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718348

RESUMO

PEDOT: PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.

5.
J Am Chem Soc ; 146(5): 3363-3372, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265366

RESUMO

Inverted organic solar cells (OSCs) have attracted much attention because of their outstanding stability, with zinc oxide (ZnO) being commonly used as the electron transport layer (ETL). However, both surface defects and the photocatalytic effect of ZnO could lead to serious photodegradation of acceptor materials. This, in turn, hampers the improvement of the efficiency and stability in OSCs. Herein, we developed a multiarmed aromatic ammonium salt, namely, benzene-1,3,5-triyltrimethanaminium bromide (PhTMABr), for modifying ZnO. This compound possesses mild weak acidity aimed at removing the residual amines present within ZnO film. In addition, the PhTMABr could also passivate surface defects of ZnO through multiple hydrogen-bonding interactions between its terminal amino groups and the oxygen anion of ZnO, leading to a better interface contact, which effectively enhances charge transport. As a result, an efficiency of 18.75% was achieved based on the modified ETL compared to the bare ZnO (PCE = 17.34%). The devices utilizing the modified ZnO retained 87% and 90% of their initial PCE after thermal stress aging at 65 °C for 1500 h and continuous 1-sun illumination with maximum power point (MPP) tracking for 1780 h, respectively. Importantly, the extrapolated T80 lifetime with MPP tracking exceeds 10 000 h. The new class of materials employed in this work to modify the ZnO ETL should pave the way for enhancing the efficiency and stability of OSCs, potentially advancing their commercialization process.

6.
Biochem Biophys Res Commun ; 707: 149513, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38508051

RESUMO

Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.


Assuntos
Neoplasias , Receptores Purinérgicos P2X7 , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais
7.
Small ; 20(8): e2305607, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817357

RESUMO

The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.

8.
Nat Mater ; 22(8): 958-963, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37337072

RESUMO

Dislocation motion, an important mechanism underlying crystal plasticity, is critical for the hardening, processing and application of a wide range of structural and functional materials. For decades, the movement of dislocations has been widely observed in crystalline solids under mechanical loading. However, the goal of manipulating dislocation motion via a non-mechanical field alone remains elusive. Here we present real-time observations of dislocation motion controlled solely by using an external electric field in single-crystalline zinc sulfide-the dislocations can move back and forth depending on the direction of the electric field. We reveal the non-stoichiometric nature of dislocation cores and determine their charge characteristics. Both negatively and positively charged dislocations are directly resolved, and their glide barriers decrease under an electric field, explaining the experimental observations. This study provides direct evidence of dislocation dynamics controlled by a non-mechanical stimulus and opens up the possibility of modulating dislocation-related properties.

9.
J Magn Reson Imaging ; 59(4): 1384-1393, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37315155

RESUMO

BACKGROUND: The fetal neurodevelopmental microstructural alterations of intrauterine exposure to preeclampsia (PE) or gestational hypertension (GH) remain unknown. PURPOSE: To evaluate the differences in diffusion-weighted imaging (DWI) of the fetal brain between normotensive pregnancies and PE/GH pregnancies, with a focus on PE/GH pregnancies with fetal growth restriction (FGR). STUDY TYPE: Retrospective matched case-control study. POPULATION: 40 singleton pregnancies with PE/GH complicated by FGR, and 3 paired control groups (PE/GH without FGR, normotensive FGR, normotensive pregnancies) (28-38 gestational weeks). FIELD STRENGTH/SEQUENCE: DWI with single-shot echo-planar imaging at 1.5 Tesla. ASSESSMENT: The apparent diffusion coefficient (ADC) values were calculated in the centrum semi-ovale (CSO), parietal white matter (PWM), frontal white matter (FWM), occipital white matter (OWM), temporal white matter (TWM), basal ganglia, thalamus (THAL), pons, and cerebellar hemisphere. STATISTICAL TESTS: Student t test or Wilcoxon matched test was used to reveal the difference of ADC values among the investigated brain regions. A correlation between gestational age (GA) and ADC values was determined by linear regression analysis. RESULTS: Compared with fetuses in PE/GH without FGR and those with normotensive pregnancies, fetuses in the PE/GH with FGR group had significantly lower average ADC measurements of supratentorial regions (1.65 ± 0.09 vs. 1.71 ± 0.10 10-3 mm2 /sec; vs. 1.73 ± 0.11 10-3 mm2 /sec, respectively). Regions of significantly decreased ADC values in the fetal brain included CSO, FWM, PWM, OWM, TWM and THAL in cases of PE/GH with FGR. ADC values from supratentorial regions in PE/GH pregnancies were not significantly correlated with GA (P = 0.12, 0.26); however, this trend was statistically significant in the normotensive groups. DATA CONCLUSION: ADC values may indicate fetal brain developmental alterations in PE/GH with FGR fetuses but more microscopic and morphological studies are necessary to provide additional evidence to offer a different interpretation of this trend in fetal brain. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Estudos de Casos e Controles , Pré-Eclâmpsia/diagnóstico por imagem , Hipertensão Induzida pela Gravidez/diagnóstico por imagem , Retardo do Crescimento Fetal/diagnóstico por imagem , Encéfalo/anatomia & histologia , Idade Gestacional , Imagem de Difusão por Ressonância Magnética/métodos
10.
Theor Appl Genet ; 137(1): 24, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236415

RESUMO

KEY MESSAGE: A novel quantitative trait locus qIGL1, which performed a positive function in regulating grain length in rice, was cloned by the map-based cloning approach; further studies revealed that it corresponded to LOC_Os03g30530, and the IGL1 appeared to contribute to lengthening and widening of the cells on the surface of grain hulls. Grain length is a prominent determinant for grain weight and appearance quality of rice. In this study, we conducted quantitative trait locus mapping to determine a genomic interval responsible for a long-grain phenotype observed in a japonica cultivar HD385. This led to the identification of a novel QTL for grain length on chromosome 3, named qIGL1 (for Increased Grain Length 1); the HD385 (Handao 385)-derived allele showed enhancement effects on grain length, and such an allele as well as NIP (Nipponbare)-derived allele was designated qigl1 HD385 and qIGL1NIP, respectively. Genetic analysis revealed that the qigl1HD385 allele displayed semidominant effects on grain length. Fine mapping further narrowed down the qIGL1 to an ~ 70.8-kb region containing 9 open reading frames (ORFs). A comprehensive analysis indicated that LOC_Os03g30530, which corresponded to ORF6 and carried base substitutions and deletions in HD385 relative to NIP, thereby causing changes or losses of amino-acid residues, was the true gene for qIGL1. Comparison of grain traits between a pair of near-isogenic lines (NILs), termed NIL-igl1HD385 and NIL-IGL1NIP, discovered that introduction of the igl1HD385 into the NIP background significantly resulted in the elevations of grain length and 1000-grain weight. Closer inspection of grain surfaces revealed that the cell length and width in the longitudinal direction were significantly longer and greater, respectively, in NIL-igl1HD385 line compared with in NIL-IGL1NIP line. Hence, our studies identified a new semidominant natural allele contributing to the increase of grain length and further shed light on the regulatory mechanisms of grain length.


Assuntos
Oryza , Locos de Características Quantitativas , Oryza/genética , Alelos , Mapeamento Cromossômico , Aminoácidos , Grão Comestível/genética
11.
Biomacromolecules ; 25(2): 1171-1179, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181417

RESUMO

The development of nonviral dendritic polymers with a simple molecular backbone and great gene delivery efficiency to effectively tackle cancer remains a great challenge. Phosphorus dendrimers or dendrons are promising vectors due to their structural uniformity, rigid molecular backbones, and tunable surface functionalities. Here, we report the development of a new low-generation unsymmetrical cationic phosphorus dendrimer bearing 5 pyrrolidinium groups and one amino group as a nonviral gene delivery vector. The created AB5-type dendrimers with simple molecular backbone can compress microRNA-30d (miR-30d) to form polyplexes with desired hydrodynamic sizes and surface potentials and can effectively transfect miR-30d to cancer cells to suppress the glycolysis-associated SLC2A1 and HK1 expression, thus significantly inhibiting the migration and invasion of a murine breast cancer cell line in vitro and the corresponding subcutaneous tumor mouse model in vivo. Such unsymmetrical low-generation phosphorus dendrimers may be extended to deliver other genetic materials to tackle other diseases.


Assuntos
Dendrímeros , MicroRNAs , Neoplasias , Animais , Camundongos , Dendrímeros/química , Vetores Genéticos , MicroRNAs/genética , Técnicas de Transferência de Genes , Cátions , Fósforo
12.
Soft Matter ; 20(16): 3392-3400, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38619075

RESUMO

The recent discovery of ferroelectric nematics provides new opportunities for exploring polar topology in liquid matter. Here, we report numerous potential polarization topological states (e.g., polar vortex-like and line disclination mediated structures) in confined ferroelectric nematics with similar free-energy levels. In the experiment, they appear according to the confinement size and surface anchoring conditions. Based on a minimal analytical approach, we reveal that the topological transformation is balanced among the nematic elasticity, the polarization gradient, the flexoelectric and the depolarization interactions.

13.
Soft Matter ; 20(3): 693-703, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38164981

RESUMO

The abnormal aggregation of human calcitonin (hCT) hormone peptides impairs their physiological function, leading to harmful immune responses and cytotoxicity, which limits their clinical utility. Interestingly, a representative hCT analog incorporating Y12L and N17H substitutions (DM-hCT) has shown reduced aggregation tendencies while maintaining bioactivity. But the molecular mechanism of Y12L and N17H substitutions on the conformational dynamics of hCT remains unclear. Here, we systematically investigated the folding and self-assembly dynamics of hCT and DM-hCT using atomistic discrete molecular dynamics (DMD) simulations. Our findings revealed that hCT monomers predominantly adopted unstructured conformations with dynamic helices. Oligomerization of hCT resulted in the formation of ß-sheet-rich aggregates and ß-barrel intermediates. The Y12L and N17H substitutions enhanced helical conformations and suppressed ß-sheet formation in both monomers and oligomers. These substitutions stabilized the dynamic helices and disrupted aromatic interactions responsible for ß-sheet formation at residue 12. Notably, DM-hCT assemblies still exhibited ß-sheets in phenylalanine-rich and C-terminal hydrophobic regions, suggesting that future optimizations should focus on these areas. Our simulations provide insights into the molecular mechanisms underlying hCT aggregation and the amyloid-resistant effects of Y12L and N17H substitutions. These findings have valuable implications for the development of clinical hCT analogs.


Assuntos
Calcitonina , Simulação de Dinâmica Molecular , Humanos , Calcitonina/genética , Calcitonina/química , Amiloide/química , Conformação Proteica em Folha beta
14.
J Org Chem ; 89(11): 8076-8083, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38767586

RESUMO

Patumantanes A-D (1-4), four new seco-polycyclic polyprenylated acylphloroglucinols (PPAPs) were isolated from Hypericum patulum. Patumantane A (1) was an unprecedented 1,2-seco-homoadamantane-type PPAP bearing a new 3,7-dioxatetracyclo[7.7.0.01,6.111,15]heptadecane architecture based on a 6/7/5/6 ring system. Patumantane B (2) was a unique 1,9-seco-adamantane-type PPAP with a tricyclo[4.4.4.0.02,12]tridecane core formed by a 6/6/6 carbon skeleton, and the further breakage between C-5 and C-9 decorated patumantane C (3) with the 9-nor-adamantane skeleton. More importantly, compounds 2 and 3 exhibited moderate immunosuppressive activity on Con A-induced T-lymphocyte proliferation in vitro, with IC50 values of 5.6 ± 1.2 and 11.2 ± 1.2 µM, respectively.


Assuntos
Hypericum , Floroglucinol , Hypericum/química , Floroglucinol/química , Floroglucinol/farmacologia , Floroglucinol/análogos & derivados , Floroglucinol/isolamento & purificação , Humanos , Estrutura Molecular , Carbono/química , Proliferação de Células/efeitos dos fármacos
15.
J Chem Inf Model ; 64(8): 3386-3399, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38489841

RESUMO

Aggregation of tau protein into intracellular fibrillary inclusions is characterized as the hallmark of tauopathies, including Alzheimer's disease and chronic traumatic encephalopathy. The microtubule-binding (MTB) domain of tau, containing either three or four repeats with sequence similarities, plays an important role in determining tau's aggregation. Previous studies have reported that abnormal acetylation of lysine residues displays a distinct effect on the formation of pathological tau aggregates. However, the underlying molecular mechanism remains mostly elusive. In this study, we performed extensive replica exchange molecular dynamics (REMD) simulations of 144 µs in total to systematically investigate the dimerization of four tau MTB repeats and explore the impacts of Lys280 (K280) or Lys321 (K321) acetylation on the conformational ensembles of the R2 or R3 dimer. Our results show that R3 is the most prone to aggregation among the four repeats, followed by R2 and R4, while R1 displays the weakest aggregation propensity with a disordered structure. Acetylation of K280 could promote the aggregation of R2 peptides by increasing the formation of ß-sheet structures and strengthening the interchain interaction. However, K321 acetylation decreases the ß-sheet content of the R3 dimer, reduces the ability of R3 peptides to form long ß-strands, and promotes the stable helix structure formation. The salt bridge and Y310-Y310 π-π stacking interactions of the R3 dimer are greatly weakened by K321 acetylation, resulting in the inhibition of dimerization. This study uncovers the structural ensembles of tau MTB repeats and provides mechanistic insights into the influences of acetylation on tau aggregation, which may deepen the understanding of the pathogenesis of tauopathies.


Assuntos
Microtúbulos , Simulação de Dinâmica Molecular , Agregados Proteicos , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Acetilação , Microtúbulos/metabolismo , Multimerização Proteica , Ligação Proteica , Humanos , Conformação Proteica
16.
Exp Brain Res ; 242(6): 1387-1397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563979

RESUMO

Cerebral small vessel disease (CSVD) is increasingly being recognized as a leading contributor to cognitive impairment in the elderly. However, there is a lack of effective preventative or therapeutic options for CSVD. In this exploratory study, we investigated the interplay between neuroinflammation and CSVD pathogenesis as well as the cognitive performance, focusing on NLRP3 signaling as a new therapeutic target. Spontaneously hypertensive stroke-prone (SHRSP) rats served as a CSVD model. We found that SHRSP rats showed decline in learning and memory abilities using morris water maze test. Activated NLRP3 signaling and an increased expression of the downstream pro-inflammatory factors, including IL (interleukin)-6 and tumor necrosis factor α were determined. We also observed a remarkable increase in the production of pyroptosis executive protein gasdermin D, and elevated astrocytic and microglial activation. In addition, we identify several neuropathological hallmarks of CSVD, including blood-brain barrier breakdown, white matter damage, and endothelial dysfunction. These results were in correlation with the activation of NLRP3 inflammasome. Thus, our findings reveal that the NLRP3-mediated inflammatory pathway could play a central role in the pathogenesis of CSVD, presenting a novel target for potential CSVD treatment.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Modelos Animais de Doenças , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Endogâmicos SHR , Animais , Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Inflamassomos/metabolismo , Masculino , Doenças Neuroinflamatórias/metabolismo , Microglia/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Transdução de Sinais/fisiologia
17.
Phys Chem Chem Phys ; 26(21): 15637-15647, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764421

RESUMO

Polar nematic liquid crystals are new classes of condensed-matter states, where the inversion symmetry common to the traditional apolar nematics is broken. Establishing theoretical descriptions for the novel phase states is an urgent task. Here, we develop a Landau-type mean-field theory for both the achiral and chiral ferroelectric nematics. In the polar nematic states, the inversion symmetry breaking adds three new contributions: an additional odd elastic term (corresponding to the flexoelectricity in symmetry) to the standard Oseen-Frank free energy, electrostatic effect and an additional Landau term relating to the gradient of local polarization. The coupling between the scalar order parameter and polarization order should be considered. In the chiral and polar nematic state, we reveal that the competition between the twist elasticity and polarity dictates effective compressive energy arising from the quasi-layer structure. The polarization gradient is an essential term for describing the ferroelectric nature. Besides, we successfully simulate an experimentally reported structural transition in ferroelectric nematic droplets from a concentric-vortex-like to a line-disclination-mediated topology based on the developed theory. The approaches provide theoretical foundations for testing and predicting polar structures in emerging polar liquid crystals.

18.
Phys Chem Chem Phys ; 26(4): 3322-3334, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197437

RESUMO

Chronic traumatic encephalopathy is a neurodegenerative tauopathy pathologically characterized by fibrillary tau aggregates in the depth of sulci. Clearing fibrous tau aggregates is considered a promising strategy in the treatment of CTE. Fisetin (FS), a natural polyphenolic small molecule, was confirmed to disassociate the tau filaments in vitro. However, the molecular mechanisms of FS in destabilizing the CTE-related R3-R4 tau fibrils remain largely unknown. In this study, we compared the atomic-level structural differences of the two types of CTE-related R3-R4 tau fibrils and explored the influence and molecular mechanisms of FS on the two types of fibrils by conducting multiple molecular dynamics (MD) simulations. The results reveal that the type 1 fibril displays higher structural stability than the type 2 fibril, with a lower root-mean-square-fluctuation value and higher ß-sheet structure probability. FS can destabilize both types of fibrils by decreasing the ß-sheet structure content, interrupting the mainchain H-bond network, and increasing the solvent accessible surface area and ß7-ß8 angle of the fibrils. H-bonding, π-π stacking and cation-π are the common interactions driving FS molecules binding on the two types of fibrils, while the hydrophobic interaction occurs only in the type 2 fibril. Due to the relatively short simulation time, our study captures the early molecular mechanisms. However, it does provide beneficial information for the design of drugs to prevent or treat CTE.


Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Humanos , Encefalopatia Traumática Crônica/metabolismo , Proteínas tau/química , Flavonóis , Simulação de Dinâmica Molecular , Doença de Alzheimer/metabolismo
19.
Phys Chem Chem Phys ; 26(16): 12422-12432, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38619386

RESUMO

In traditional chiral nematic liquid crystals, the apolar cholesterics, the dielectric effect is the main driving force for responding to an electric field. The emerging polar chiral nematics, dubbed helielectric nematics, are the polar counterparts of the cholesterics. The head-to-tail symmetry breaking of the new matter state enables it to respond sensitively to the polarity of an electric field. Here, we report on the observation of a sequential polar winding/unwinding process of polarization helices under an electric field applied perpendicular to the helical axes, which behaves distinctly from the unwinding of the apolar cholesteric helices. Understanding the helix-unwinding behaviors provides insights for developing switchable devices based on helielectric nematics.

20.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38775745

RESUMO

The understanding on the growth mechanism of complex gold nanostructures both experimentally and theoretically can guide their design and fabrication toward various applications. In this work, we report a cysteine-directed overgrowth of penta-twinned nanorod seeds into jagged gold bipyramids with discontinuous stepped {hhk} facets. By monitoring the growth process, we find that {hhk} facets with large k/h values (∼7) are formed first at two ends of the nanorods, followed by the protrusion of the middle section exposing {hhk} facets with smaller indices (k/h ∼ 2-3). Molecular dynamics simulations indicate that the strong adsorption of cysteine molecules on {110} facets is likely responsible for the formation of stepped {hhk} facets, and the stronger adsorption of cysteine molecules on {hhk} facets with smaller k/h compared to that on {hhk} facets with larger k/h is a possible cause of the discontinuity of {hhk} facets at the middle of gold bipyramids. The obtained jagged gold bipyramids display large field enhancement under illumination due to their sharp nanostructures, demonstrating their application potentials in surface-enhanced spectroscopy and catalysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa