Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Precis Clin Med ; 7(1): pbae005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38558949

RESUMO

Background: Myopia is a leading cause of visual impairment in Asia and worldwide. However, accurately predicting the progression of myopia and the high risk of myopia remains a challenge. This study aims to develop a predictive model for the development of myopia. Methods: We first retrospectively gathered 612 530 medical records from five independent cohorts, encompassing 227 543 patients ranging from infants to young adults. Subsequently, we developed a multivariate linear regression algorithm model to predict the progression of myopia and the risk of high myopia. Result: The model to predict the progression of myopia achieved an R2 value of 0.964 vs a mean absolute error (MAE) of 0.119D [95% confidence interval (CI): 0.119, 1.146] in the internal validation set. It demonstrated strong generalizability, maintaining consistent performance across external validation sets: R2 = 0.950 vs MAE = 0.119D (95% CI: 0.119, 1.136) in validation study 1, R2 = 0.950 vs MAE = 0.121D (95% CI: 0.121, 1.144) in validation study 2, and R2 = 0.806 vs MAE = -0.066D (95% CI: -0.066, 0.569) in the Shanghai Children Myopia Study. In the Beijing Children Eye Study, the model achieved an R2 of 0.749 vs a MAE of 0.178D (95% CI: 0.178, 1.557). The model to predict the risk of high myopia achieved an area under the curve (AUC) of 0.99 in the internal validation set and consistently high area under the curve values of 0.99, 0.99, 0.96 and 0.99 in the respective external validation sets. Conclusion: Our study demonstrates accurate prediction of myopia progression and risk of high myopia providing valuable insights for tailoring strategies to personalize and optimize the clinical management of myopia in children.

2.
iScience ; 24(9): 103031, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34541467

RESUMO

Ultrathin hexagonal GaTe, with relatively high charge density, holds great potential in the field of optoelectronic devices. However, the thermodynamical stability limits it fabrications as well as applications. Here, by introducing two-dimensional MoS2 as the substrate, we successfully realized the phase-controlled synthesis of ultrathin h-GaTe, leading to high-quality h-GaTe/MoS2 heterostructures. Theoretical calculation studies reveal that GaTe with hexagonal phase is more thermodynamically stable on MoS2 templates, which can be attributed to the strain stretching and the formation energy reduction. Based on the achieved p-n heterostructures, optoelectronic devices are designed and probed, where remarkable photoresponsivity (32.5 A/W) and fast photoresponse speed (<50 µs) are obtained, indicating well-behaved photo-sensing behaviors. The study here could offer a good reference for the controlled growth of the relevant materials, and the achieved heterostructure will find promising applications in future integrated electronic and optoelectronic devices and systems.

3.
ACS Nano ; 15(6): 10039-10047, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34036786

RESUMO

van der Waals (vdW) vertical p-n junctions based on two-dimensional (2D) materials have shown great potential in flexible, self-driven, high-efficiency electronic and optoelectronic applications. However, due to the complex nucleation dynamics, the controllable synthesis of vertical heterostructures remains a daunting challenge. Here, we report the controlled growth of vertical GaSe/MoS2 p-n heterojunctions via a liquid gallium (Ga)-assisted chemical vapor deposition method. The growth mechanism can be interpreted by theoretical calculations based on the Burton-Cabrera-Frank theory. By analyzing the diffusion barriers and the Ehrlich-Schwoebel barriers of adatoms, we found that the growth modes between vertical and lateral can be precisely switched by means of adjusting the amount of Ga. Based on the achieved high-quality vertical GaSe/MoS2 p-n heterojunctions, photosensing devices are further designed and systematically investigated. Upon light illumination, prominent photovoltaic effects with large open-circuit voltage (0.61 V) and broadband detection capability from 375 to 633 nm are observed, which can further be employed for self-powered photodetection with high responsivity (900 mA/W) and fast response speed (5 ms). The developed liquid-metal-assisted strategy provides an effective method for controllable synthesis of vdW heterostructures and will give impetus to their applications in high-performance optoelectronic device.

4.
Nanoscale ; 12(11): 6480-6488, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32154546

RESUMO

van der Waals (vdWs) heterostructures, combining different two-dimensional (2D) layered materials with diverse properties, have been demonstrated to be a very promising platform to explore a new physical phenomenon and realize various potential applications in atomically thin electronic and optoelectronic devices. Here, we report the controlled growth of vertically stacked ß-In2Se3/MoS2 vdWs heterostructures (despite the existence of large lattice mismatching ∼29%) through a typical two-step chemical vapor deposition (CVD) method. The crystal structure of the achieved heterostructures is characterized by transmission electron microscopy, where evident Moiré patterns are observed, indicating well-aligned lattice orientation. Strong photoluminescence quenching is obeserved in the heterostructure, revealing effective interlayer charge transfer at the interface. Electrical devices are further constructed based on the achieved heterostructures, which have a high on/off ratio and a typical rectifying behavior. Upon laser irradiation, the devices show excellent photosensing properties. A high responsivity of 4.47 A W-1 and a detectivity of 1.07 × 109 Jones are obtained under 450 nm laser illumination with a bias voltage of 1 V, which are much better than those of heterostructures grown via CVD. Most significantly, the detection range can be extended to near-infrared due to the relatively small bandgap nature of ß-In2Se3. With 830 nm laser illumination, the devices also show distinct photoresponses with fast response speed even when operating at room temperature. The high-quality ß-In2Se3/MoS2 heterostructures broaden the family of the 2D layered heterostructure system and should have significant potential applications in high-performance broadband photodetectors.

5.
ACS Nano ; 13(11): 13573-13580, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31697469

RESUMO

Semiconducting p-n heterojunctions, serving as the basic unit of modern electronic devices, such as photodetectors, solar-energy conversion devices, and light-emitting diodes (LEDs), have been extensively investigated in recent years. In this work, high performance self-powered broad-band photodetectors were fabricated based on vertically stacked p-n heterojunctions though combining p-type WSe2 with n-type Bi2Te3 via van der Waals (vdW) epitaxial growth. Devices based on the p-n heterojunction show obvious current rectification behaviors in the dark and superior photovoltaic characteristics under light irradiation. A maximum short circuit current of 18 nA and open circuit voltage of 0.25 V can be achieved with the illumination light of 633 nm (power density: 26.4 mW/cm2), which are among the highest values compared with the ever reported 2D vdW heterojunctions synthesized by chemical vapor deposition (CVD) method. Benefiting from the broad-band absorption of the heterostructures, the detection range can be expanded from the visible to near-infrared (375-1550 nm). Moreover, ascribing to the efficient carriers separation process at the junction interfaces, the devices can be further employed as self-powered photodetectors, where a fast response time (∼210 µs) and high responsivity (20.5 A/W at 633 nm and 27 mA/W at 1550 nm) are obtained under zero bias voltage. The WSe2/Bi2Te3 p-n heterojunction-based self-powered photodetectors with high photoresponsivity, fast photoresponse time, and broad spectral response will find potential applications in high speed and self-sufficient broad-band devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa