Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36839941

RESUMO

Despite the rapid development in hidradenitis suppurativa (HS) research, the immediate introduction of potent therapeutic compounds in clinical trials and the lack of definitive outcome measures have led to the discontinuation of potential therapeutic compound studies. HS is a solely human disease, and therefore, the search for preclinical human models has been given priority. The 3D-SeboSkin model, a co-culture of human skin explants with human SZ95 sebocytes as a feeder layer, has been shown to prevent the rapid degeneration of human skin in culture and has been validated for HS preclinical studies. In this work, the HS 3D-SeboSkin model has been employed to characterize cellular and molecular effects of the EMA- and FDA-approved biologic adalimumab. Adalimumab, a tumor necrosis factor-α inhibitor, was shown to target inflammatory cells present in HS lesions, inducing a prominent anti-inflammatory response and contributing to tissue regeneration through a wound healing mechanism. Adalimumab inhibited the lesional tissue expression of TNF-α, IL-3, IL-15, and MCP-3 and downregulated the secretion of IL-1α, IL-5, RANTES, MCP-2, TNF-α, TNF-ß, TGF-ß, and IFN-γ. In contrast, IL-6 was stimulated. The compound failed to modify abnormal epithelial cell differentiation present in the HS lesions. Patients with Hurley stage II lesions exhibited stronger expression of autophagy proteins in perilesional than in lesional skin. Adalimumab modified the levels of the pro-apoptotic proteins LC3A, LC3B, and p62 in an individual, patient-dependent manner. Finally, adalimumab did not modify the NFκB signal proteins in SZ95 sebocytes and NHK-19 keratinocytes, used to study this specific pathway. The administration of the validated HS 3D-SeboSkin model in ex vivo studies prior to clinical trials could elucidate the individual pathogenetic targets of therapeutic candidates and, therefore, increase the success rates of clinical studies, minimizing HS drug development costs.

2.
Pharmaceutics ; 14(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35056940

RESUMO

Chronic inflammation and dysregulated epithelial differentiation, especially of hair follicle keratinocytes, have been suggested as the major pathogenetic pathways of hidradenitis suppurativa/acne inversa (HS). On the other hand, obesity and metabolic syndrome have additionally been considered as an important risk factor. With adalimumab, a drug has already been approved and numerous other compounds are in advanced-stage clinical studies. A systematic review was conducted to detect and corroborate HS pathogenetic mechanisms at the molecular level and identify HS molecular markers. The obtained data were used to confirm studied and off-label administered drugs and to identify additional compounds for drug repurposing. A robust, strongly associated group of HS biomarkers was detected. The triad of HS pathogenesis, namely upregulated inflammation, altered epithelial differentiation and dysregulated metabolism/hormone signaling was confirmed, the molecular association of HS with certain comorbid disorders, such as inflammatory bowel disease, arthritis, type I diabetes mellitus and lipids/atherosclerosis/adipogenesis was verified and common biomarkers were identified. The molecular suitability of compounds in clinical studies was confirmed and 31 potential HS repurposing drugs, among them 10 drugs already launched for other disorders, were detected. This systematic review provides evidence for the importance of molecular studies to advance the knowledge regarding pathogenesis, future treatment and biomarker-supported clinical course follow-up in HS.

3.
J Am Soc Mass Spectrom ; 30(11): 2392-2397, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31392698

RESUMO

In the analysis of polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), a commonly observed ionization pathway is cation-adduct formation, as polymers often lack easily ionizable (basic/acidic) functional groups. The mechanism of this process has been hypothesized to involve gas-phase cation attachment. In previous experiments, a split sample plate set-up has been introduced, enabling separate deposition of the components on individual MALDI plates. The plates are divided by a small gap of a few micrometers, allowing simultaneous laser irradiation from both plates, while precluding the possibility of any other interactions prior to ablation. Here, we extend on these studies by using different polymer-salt combinations to test the generalizability of a gas-phase ionization process. Clear evidence for in-plume ionization is presented for the model polymers poly (methyl methacrylate) and polystyrene. Furthermore, the contribution of in-plume processes to the overall ion formation by cationization is gauged, providing a first estimate for the importance of this pathway.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa