Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 98(8): 531-540, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32744876

RESUMO

The endothelin receptor A (ETA) and endothelin receptor B (ETB) are G protein-coupled receptors that are co-expressed in vascular smooth muscle cells. Endothelin-1 (ET-1) activates endothelin receptors to cause microvascular vasoconstriction. Previous studies have shown that heteromerization between ETA and ETB prolongs Ca2+ transients, leading to prolongation of Gαq-dependent signaling and sustained vasoconstriction. We hypothesized that these effects are in part mediated by the resistance of ETA/ETB heteromers to ß-arrestin recruitment and subsequent desensitization. Using bioluminescence resonance energy transfer 2 (BRET2), we found that ETB has a relatively equal affinity to form either homomers or heteromers with ETA when co-expressed in the human embryonic kidney 293 (HEK293) cells. When co-expressed, activation of ETA and ETB by ET-1 caused a heteromer-specific reduction and delay in ß-arrestin-2 recruitment with a corresponding reduction and delay in ET-1-induced ETA/ETB co-internalization. Furthermore, the co-expression of ETA and ETB inhibited ET-1-induced ß-arrestin-1-dependent extracellular signal-regulated kinase (ERK) phosphorylation while prolonging ET-1-induced Gαq-dependent ERK phosphorylation. ETA/ETB heteromerization mediates the long-lasting vasoconstrictor response to ET-1 by the prolongation of Gαq-dependent signaling and inhibition of ß-arrestin function.


Assuntos
Multimerização Proteica , Receptor de Endotelina A/química , Receptor de Endotelina B/química , beta-Arrestinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Fosforilação , Estrutura Quaternária de Proteína , Transdução de Sinais
2.
Neuropharmacology ; 151: 1-12, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940536

RESUMO

Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by motor, cognitive, and behavioural changes. One of the earliest changes to occur in HD is a reduction in cannabinoid 1 receptor (CB1) levels in the striatum, which is strongly correlated with HD pathogenesis. CB1 positive allosteric modulators (PAM) enhance receptor affinity for, and efficacy of activation by, orthosteric ligands, including the endocannabinoids anandamide and 2-arachidonoylglycerol. The goal of this study was to determine whether the recently characterized CB1 allosteric modulators GAT211 (racemic), GAT228 (R-enantiomer), and GAT229 (S-enantiomer), affected the signs and symptoms of HD. GAT211, GAT228, and GAT229 were evaluated in normal and HD cell models, and in a transgenic mouse model of HD (7-week-old male R6/2 mice, 10 mg/kg/d, 21 d, i.p.). GAT229 was a CB1 PAM that improved cell viability in HD cells and improved motor coordination, delayed symptom onset, and normalized gene expression in R6/2 HD mice. GAT228 was an allosteric agonist that did not enhance endocannabinoid signaling or change symptom progression in R6/2 mice. GAT211 displayed intermediate effects between its enantiomers. The compounds used here are not drugs, but probe compounds used to determine the potential utility of CB1 PAMs in HD. Changes in gene expression, and not protein, were quantified in R6/2 HD mice because HD pathogenesis is associated with dysregulation of mRNA levels. The data presented here provide the first proof of principle for the use of CB1 PAMs to treat the signs and symptoms of HD.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/uso terapêutico , Corpo Estriado/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Indóis/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica/efeitos dos fármacos , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Indóis/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa