Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 181(7): 1445-1449, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32533917

RESUMO

The COVID19 crisis has magnified the issues plaguing academic science, but it has also provided the scientific establishment with an unprecedented opportunity to reset. Shoring up the foundation of academic science will require a concerted effort between funding agencies, universities, and the public to rethink how we support scientists, with a special emphasis on early career researchers.


Assuntos
Mobilidade Ocupacional , Pesquisadores/tendências , Pesquisa/tendências , Logro , Pesquisa Biomédica , Humanos , Pesquisadores/educação , Ciência/educação , Ciência/tendências , Universidades
2.
Nature ; 605(7910): 509-515, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545674

RESUMO

Recent understanding of how the systemic environment shapes the brain throughout life has led to numerous intervention strategies to slow brain ageing1-3. Cerebrospinal fluid (CSF) makes up the immediate environment of brain cells, providing them with nourishing compounds4,5. We discovered that infusing young CSF directly into aged brains improves memory function. Unbiased transcriptome analysis of the hippocampus identified oligodendrocytes to be most responsive to this rejuvenated CSF environment. We further showed that young CSF boosts oligodendrocyte progenitor cell (OPC) proliferation and differentiation in the aged hippocampus and in primary OPC cultures. Using SLAMseq to metabolically label nascent mRNA, we identified serum response factor (SRF), a transcription factor that drives actin cytoskeleton rearrangement, as a mediator of OPC proliferation following exposure to young CSF. With age, SRF expression decreases in hippocampal OPCs, and the pathway is induced by acute injection with young CSF. We screened for potential SRF activators in CSF and found that fibroblast growth factor 17 (Fgf17) infusion is sufficient to induce OPC proliferation and long-term memory consolidation in aged mice while Fgf17 blockade impairs cognition in young mice. These findings demonstrate the rejuvenating power of young CSF and identify Fgf17 as a key target to restore oligodendrocyte function in the ageing brain.


Assuntos
Envelhecimento , Encéfalo , Líquido Cefalorraquidiano , Células Precursoras de Oligodendrócitos , Oligodendroglia , Animais , Diferenciação Celular/genética , Líquido Cefalorraquidiano/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Camundongos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo
3.
Nature ; 603(7900): 321-327, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073561

RESUMO

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Animais , Linfócitos B , Moléculas de Adesão Celular Neurônio-Glia , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Camundongos , Proteínas do Tecido Nervoso
4.
Proc Natl Acad Sci U S A ; 121(12): e2307250121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483990

RESUMO

Myelination of neuronal axons is essential for nervous system development. Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how actin is regulated during myelination is poorly understood. We recently identified serum response factor (SRF)-a transcription factor known to regulate expression of actin and actin regulators in other cell types-as a critical driver of myelination in the aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously in oligodendrocytes for myelination during development. Combining ChIP-seq with RNA-seq identifies SRF-target genes in oligodendrocyte precursor cells and oligodendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF knockout oligodendrocytes exhibit dramatically reduced actin filament levels early in differentiation, consistent with its role in actin-dependent myelin sheath initiation. Surprisingly, oligodendrocyte-restricted loss of SRF results in upregulation of gene signatures associated with aging and neurodegenerative diseases. Together, our findings identify SRF as a transcriptional regulator that controls the expression of cytoskeletal genes required in oligodendrocytes for myelination. This study identifies an essential pathway regulating oligodendrocyte biology with high relevance to brain development, aging, and disease.


Assuntos
Actinas , Fator de Resposta Sérica , Actinas/genética , Actinas/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Oligodendroglia/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Citoesqueleto/genética , Diferenciação Celular/genética
5.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690758

RESUMO

Exocytosis is a fundamental process used by eukaryotes to regulate the composition of the plasma membrane and facilitate cell-cell communication. To investigate exocytosis in neuronal morphogenesis, previously we developed computational tools with a graphical user interface to enable the automatic detection and analysis of exocytic events from fluorescence timelapse images. Although these tools were useful, we found the code was brittle and not easily adapted to different experimental conditions. Here, we developed and validated a robust and versatile toolkit, named pHusion, for the analysis of exocytosis, written in ImageTank, a graphical programming language that combines image visualization and numerical methods. We tested pHusion using a variety of imaging modalities and pH-sensitive fluorophores, diverse cell types and various exocytic markers, to generate a flexible and intuitive package. Using this system, we show that VAMP3-mediated exocytosis occurs 30-times more frequently in melanoma cells compared with primary oligodendrocytes, that VAMP2-mediated fusion events in mature rat hippocampal neurons are longer lasting than those in immature murine cortical neurons, and that exocytic events are clustered in space yet random in time in developing cortical neurons.


Assuntos
Exocitose , Animais , Ratos , Camundongos , Neurônios/metabolismo , Neurônios/citologia , Humanos , Concentração de Íons de Hidrogênio , Software , Hipocampo/metabolismo , Hipocampo/citologia
6.
Nat Chem Biol ; 19(2): 187-197, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266352

RESUMO

Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.


Assuntos
Envelhecimento , Lipídeos , Animais , Humanos , Camundongos , Envelhecimento/genética , Anti-Inflamatórios , Encéfalo/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo
7.
J Am Chem Soc ; 146(13): 8895-8903, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511265

RESUMO

Actin is one of the most abundant proteins in eukaryotic cells and is a key component of the cytoskeleton. A range of small molecules has emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Among these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390-490 nm pulsed light and rapidly relaxes to its inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated via live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of the microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.


Assuntos
Citoesqueleto de Actina , Actinas , Animais , Camundongos , Humanos , Actinas/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Linhagem Celular , Microtúbulos/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(29): 17260-17268, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632007

RESUMO

Understanding how a network of interconnected neurons receives, stores, and processes information in the human brain is one of the outstanding scientific challenges of our time. The ability to reliably detect neuroelectric activities is essential to addressing this challenge. Optical recording using voltage-sensitive fluorescent probes has provided unprecedented flexibility for choosing regions of interest in recording neuronal activities. However, when recording at a high frame rate such as 500 to 1,000 Hz, fluorescence-based voltage sensors often suffer from photobleaching and phototoxicity, which limit the recording duration. Here, we report an approach called electrochromic optical recording (ECORE) that achieves label-free optical recording of spontaneous neuroelectrical activities. ECORE utilizes the electrochromism of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films, whose optical absorption can be modulated by an applied voltage. Being based on optical reflection instead of fluorescence, ECORE offers the flexibility of an optical probe without suffering from photobleaching or phototoxicity. Using ECORE, we optically recorded spontaneous action potentials in cardiomyocytes, cultured hippocampal and dorsal root ganglion neurons, and brain slices. With minimal perturbation to cells, ECORE allows long-term optical recording over multiple days.


Assuntos
Eletrofisiologia/métodos , Neurônios/fisiologia , Poliestirenos , Tiofenos , Potenciais de Ação/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Técnicas Eletroquímicas/métodos , Fenômenos Eletrofisiológicos , Corantes Fluorescentes , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Humanos , Imagem Óptica , Óptica e Fotônica/métodos
10.
Nat Methods ; 14(5): 479-482, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28394337

RESUMO

The actin cytoskeleton is essential for many fundamental biological processes, but tools for directly manipulating actin dynamics are limited to cell-permeable drugs that preclude single-cell perturbations. Here we describe DeActs, genetically encoded actin-modifying polypeptides, which effectively induce actin disassembly in eukaryotic cells. We demonstrate that DeActs are universal tools for studying the actin cytoskeleton in single cells in culture, tissues, and multicellular organisms including various neurodevelopmental model systems.


Assuntos
ADP Ribose Transferases/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Gelsolina/genética , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Fatores de Virulência/genética , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Ratos , Transfecção
11.
Proc Natl Acad Sci U S A ; 114(38): E8072-E8080, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874532

RESUMO

Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system's remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury.


Assuntos
Autofagia , Bainha de Mielina/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Fagocitose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/patologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , c-Mer Tirosina Quinase/genética , Receptor Tirosina Quinase Axl
12.
Development ; 142(22): 3805-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26577203

RESUMO

Glia account for more than half of the cells in the mammalian nervous system, and the past few decades have witnessed a flood of studies that detail novel functions for glia in nervous system development, plasticity and disease. Here, and in the accompanying poster, we review the origins of glia and discuss their diverse roles during development, in the adult nervous system and in the context of disease.


Assuntos
Mamíferos/embriologia , Mamíferos/fisiologia , Bainha de Mielina/fisiologia , Regeneração Nervosa/fisiologia , Sistema Nervoso/citologia , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Astrócitos/fisiologia , Microglia/fisiologia , Oligodendroglia/fisiologia , Células de Schwann/fisiologia
13.
Nat Commun ; 15(1): 265, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177161

RESUMO

Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.


Assuntos
Actinas , Bainha de Mielina , Animais , Camundongos , Bainha de Mielina/metabolismo , Actinas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Oligodendroglia , Axônios/fisiologia
14.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826303

RESUMO

2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognizing the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibers and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional biology of myelination, including high-resolution imaging of nerve tissue.

15.
Reg Anesth Pain Med ; 48(9): 462-470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36822815

RESUMO

BACKGROUND: Moderate-to-severe acute pain is prevalent in many healthcare settings and associated with adverse outcomes. Peripheral nerve blockade using traditional needle-based and local anesthetic-based techniques improves pain outcomes for some patient populations but has shortcomings limiting use. These limitations include its invasiveness, potential for local anesthetic systemic toxicity, risk of infection with an indwelling catheter, and relatively short duration of blockade compared with the period of pain after major injuries. Focused ultrasound is capable of inhibiting the peripheral nervous system and has potential as a pain management tool. However, investigations of its effect on peripheral nerve nociceptive fibers in animal models of acute pain are lacking. In an in vivo acute pain model, we investigated focused ultrasound's effects on behavior and peripheral nerve structure. METHODS: Focused ultrasound was applied directly to the sciatic nerve of rats just prior to a hindpaw incision; three control groups (focused ultrasound sham only, hindpaw incision only, focused ultrasound sham+hindpaw incision) were also included. For all four groups (intervention and controls), behavioral testing (thermal and mechanical hyperalgesia, hindpaw extension and flexion) took place for 4 weeks. Structural changes to peripheral nerves of non-focused ultrasound controls and after focused ultrasound application were assessed on days 0 and 14 using light microscopy and transmission electron microscopy. RESULTS: Compared with controls, after focused ultrasound application, animals had (1) increased mechanical nociceptive thresholds for 2 weeks; (2) sustained increase in thermal nociceptive thresholds for ≥4 weeks; (3) a decrease in hindpaw motor response for 0.5 weeks; and (4) a decrease in hindpaw plantar sensation for 2 weeks. At 14 days after focused ultrasound application, alterations to myelin sheaths and nerve fiber ultrastructure were observed both by light and electron microscopy. DISCUSSION: Focused ultrasound, using a distinct parameter set, reversibly inhibits A-delta peripheral nerve nociceptive, motor, and non-nociceptive sensory fiber-mediated behaviors, has a prolonged effect on C nociceptive fiber-mediated behavior, and alters nerve structure. Focused ultrasound may have potential as a peripheral nerve blockade technique for acute pain management. However, further investigation is required to determine C fiber inhibition duration and the significance of nerve structural changes.


Assuntos
Dor Aguda , Anestésicos Locais , Ratos , Animais , Ratos Sprague-Dawley , Fibras Nervosas/fisiologia , Hiperalgesia , Nervo Isquiático , Modelos Animais
16.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502978

RESUMO

Actin is one of the most abundant proteins in eukaryotic cells and a key component of the cytoskeleton. A range of small molecules have emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Amongst these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390 - 490 nm pulsed light and rapidly relaxes to the inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated by live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.

17.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090556

RESUMO

Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length and thickness are regulated by neuronal activity and can precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation and remodeling is unknown. Here, we used genetic tools to attenuate oligodendrocyte calcium signaling during active myelination in the developing mouse CNS. Surprisingly, we found that genetic calcium attenuation did not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation caused striking myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduced actin filaments in oligodendrocytes, and an intact actin cytoskeleton was necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a novel cellular mechanism required for accurate CNS myelin formation and provides mechanistic insight into how oligodendrocytes may respond to neuronal activity to sculpt myelin sheaths throughout the nervous system.

18.
Nat Commun ; 13(1): 5583, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151203

RESUMO

Myelin is required for rapid nerve signaling and is emerging as a key driver of CNS plasticity and disease. How myelin is built and remodeled remains a fundamental question of neurobiology. Central to myelination is the ability of oligodendrocytes to add vast amounts of new cell membrane, expanding their surface areas by many thousand-fold. However, how oligodendrocytes add new membrane to build or remodel myelin is not fully understood. Here, we show that CNS myelin membrane addition requires exocytosis mediated by the vesicular SNARE proteins VAMP2/3. Genetic inactivation of VAMP2/3 in myelinating oligodendrocytes caused severe hypomyelination and premature death without overt loss of oligodendrocytes. Through live imaging, we discovered that VAMP2/3-mediated exocytosis drives membrane expansion within myelin sheaths to initiate wrapping and power sheath elongation. In conjunction with membrane expansion, mass spectrometry of oligodendrocyte surface proteins revealed that VAMP2/3 incorporates axon-myelin adhesion proteins that are collectively required to form nodes of Ranvier. Together, our results demonstrate that VAMP2/3-mediated membrane expansion in oligodendrocytes is indispensable for myelin formation, uncovering a cellular pathway that could sculpt myelination patterns in response to activity-dependent signals or be therapeutically targeted to promote regeneration in disease.


Assuntos
Oligodendroglia , Proteína 2 Associada à Membrana da Vesícula , Axônios/fisiologia , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
19.
Dev Cell ; 56(9): 1215-1217, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33945781

RESUMO

In the myelin field, there is a lack of reliable in vitro tools to study myelination, especially using human cells. In this issue of Developmental Cell, James et al. present a guide to generating human iPSC-derived "myelinoids"-3D models of myelination that reliably achieve mature myelin formation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Bainha de Mielina , Humanos
20.
Dev Cell ; 51(6): 659-661, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31951538

RESUMO

Myelination in the CNS requires oligodendrocytes to first select correct axonal targets and then extend their membranes around and along these axons. In this issue of Developmental Cell, Klingseisen et al. (2019) find that the adhesion protein Neurofascin is required in oligodendrocytes for both target selection and myelin growth.


Assuntos
Bainha de Mielina , Oligodendroglia , Axônios , Adesão Celular , Neuroglia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa