Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113709, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280196

RESUMO

During sensory-guided behavior, an animal's decision-making dynamics unfold through sequences of distinct performance states, even while stimulus-reward contingencies remain static. Little is known about the factors that underlie these changes in task performance. We hypothesize that these decision-making dynamics can be predicted by externally observable measures, such as uninstructed movements and changes in arousal. Here, using computational modeling of visual and auditory task performance data from mice, we uncovered lawful relationships between transitions in strategic task performance states and an animal's arousal and uninstructed movements. Using hidden Markov models applied to behavioral choices during sensory discrimination tasks, we find that animals fluctuate between minutes-long optimal, sub-optimal, and disengaged performance states. Optimal state epochs are predicted by intermediate levels, and reduced variability, of pupil diameter and movement. Our results demonstrate that externally observable uninstructed behaviors can predict optimal performance states and suggest that mice regulate their arousal during optimal performance.


Assuntos
Nível de Alerta , Movimento , Camundongos , Animais , Nível de Alerta/fisiologia , Análise e Desempenho de Tarefas , Simulação por Computador
2.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38617286

RESUMO

Performance during perceptual decision-making exhibits an inverted-U relationship with arousal, but the underlying network mechanisms remain unclear. Here, we recorded from auditory cortex (A1) of behaving mice during passive tone presentation, while tracking arousal via pupillometry. We found that tone discriminability in A1 ensembles was optimal at intermediate arousal, revealing a population-level neural correlate of the inverted-U relationship. We explained this arousal-dependent coding using a spiking network model with a clustered architecture. Specifically, we show that optimal stimulus discriminability is achieved near a transition between a multi-attractor phase with metastable cluster dynamics (low arousal) and a single-attractor phase (high arousal). Additional signatures of this transition include arousal-induced reductions of overall neural variability and the extent of stimulus-induced variability quenching, which we observed in the empirical data. Altogether, this study elucidates computational principles underlying interactions between pupil-linked arousal, sensory processing, and neural variability, and suggests a role for phase transitions in explaining nonlinear modulations of cortical computations.

3.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034793

RESUMO

During sensory-guided behavior, an animal's decision-making dynamics unfold through sequences of distinct performance states, even while stimulus-reward contingencies remain static. Little is known about the factors that underlie these changes in task performance. We hypothesize that these decision-making dynamics can be predicted by externally observable measures, such as uninstructed movements and changes in arousal. Here, combining behavioral experiments in mice with computational modeling, we uncovered lawful relationships between transitions in strategic task performance states and an animal's arousal and uninstructed movements. Using hidden Markov models applied to behavioral choices during sensory discrimination tasks, we found that animals fluctuate between minutes-long optimal, sub-optimal and disengaged performance states. Optimal state epochs were predicted by intermediate levels, and reduced variability, of pupil diameter, along with reduced variability in face movements and locomotion. Our results demonstrate that externally observable uninstructed behaviors can predict optimal performance states, and suggest mice regulate their arousal during optimal performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa