Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 14(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397428

RESUMO

As a lifelong source of neurons, neural stem cells (NSCs) serve multiple crucial functions in the brain. The senescence of NSCs may be associated with the onset and progression of Alzheimer's disease (AD). Our study reveals a noteworthy finding, indicating that the AD-associated pathogenic protein amyloid-ß (Aß) substantially enhances senescence-related characteristics of human NSCs. These characteristics encompass the enhanced expression of p16 and p21, the upregulation of genes associated with the senescence-associated secretory phenotype (SASP), increased SA-ß-gal activity, and the activation of the DNA damage response. Further studies revealed that Aß treatment significantly downregulates the SIRT1 protein which plays a crucial role in regulating the aging process and decreases downstream PGC-1α and FOXO3. Subsequently, we found that SIRT1 overexpression significantly alleviates a range of Aß-induced senescent markers in human NSCs. Taken together, our results uncover that Aß accelerates cellular senescence in human NSCs, making SIRT1 a highly promising therapeutic target for senescent NSCs which may contribute to age-related neurodegenerative diseases, including AD.


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Humanos , Doença de Alzheimer/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Peptídeos beta-Amiloides/metabolismo , Células-Tronco Neurais/metabolismo , Senescência Celular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa