Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 64(12): 2327-2343, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36218272

RESUMO

Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.


Assuntos
Poncirus , Poncirus/genética , Poncirus/metabolismo , Tetraploidia , Metilação , Ácidos Graxos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Temperatura Baixa
2.
Small Methods ; : e2401221, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291906

RESUMO

Regulating the distribution of surface elements in lithium-rich cathode materials can effectively change the electrochemical performance of cathode materials. Considering that the enrichment of Mn element on the surface is the main reason for the irreversible phase transition and dissolution of its surface structure, which in turn is the main reason for performance degradation. Based on the molten salt-assisted sintering method, a lithium rich cathode material with surface rich Ni and Co is designed and prepared. The surface enrichment of Ni and Co effectively reduces the dissolution of Mn, promotes the occurrence of irreversible collapse of surface structure from layered phase to rock salt phase on the material surface, improves the stability of surface crystal phase structure, and improves the cycling stability of positive electrode materials. Notably, after 500 cycles at 1 C current density, the discharge-specific capacity attained 189.8 mAh g -1, with a capacity retention rate of 88.9%, indicating a 42.1% improvement in capacity retention. Molten salt treatment is widely used in the modification of positive electrode materials. The research work will provide new ideas for improving the stability of lithium rich materials and promoting their commercial applications.

3.
Adv Mater ; 36(13): e2311529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154114

RESUMO

A practical and effective approach to improve the cycle stability of high-energy density lithium metal batteries (LMBs) is to selectively regulate the growth of the lithium anode. The design of desolvation and lithiophilic structure have proved to be significant means to regulate the lithium deposition process. Here, a fluorinated polymer lithiophilic separator (LS) loaded with a metal-organic framework (MOF801) is designed, which facilitates the rapid transfer of Li+ within the separator owing to the MOF801-anchored PF6 - from the electrolyte, Li deposition is confined in the plane resulting from the polymer fiber layer rich in lithiophilic groups (C─F). The numerical simulation results confirm that LS induces a uniform electric field and Li+ concentration distribution. Visualization technology records the behavior of regular Li deposition in Li||Li and Li||Cu cells equipping LS. Therefore, LS exhibits an ultrahigh Li+ transference number (tLi + = 0.80) and a large exchange current density (j0 = 1.963 mA cm-2). LS guarantees the stable operation of Li||Li cells for over 1000 h. In addition, the LiNi0.8Co0.1Mn0.1O2||Li cell equipped with LS exhibits superior rate and cycle performances owing to the formation of LiF-rich robust SEI layers. This study provides a way forward for dendrite-free Li anodes from the perspective of separator engineering.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa