Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(9): 6072-6077, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356744

RESUMO

We introduce a nanoengineered nonlinear metasurface based optical element that acts as an emitting Fresnel zone plate of terahertz (THz) waves. We show that the nonlinear zone plate generates broadband THz radiation and focuses each generated frequency on a different focal point along the optical axis. Therefore, a narrow beam waist and spectral selectivity of both the bandwidth and central frequency are achieved. Furthermore, we measure and analyze the temporal structure of the focused THz electric field and show that it comprises of few cycles with an axially varying carrier frequency in agreement with the calculated dispersion of the zone plate. This demonstration of controlled emission and focusing of THz waves opens the door for the development of a wide variety of additional holographic metasurface-based THz emitters and can lead to the development of efficient, active, integrated, and ultracompact optical devices for the THz spectral region.

2.
Opt Express ; 27(15): 20837-20847, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510172

RESUMO

We present a method for the generation of THz pulses with tailored temporal shape from nonlinear metasurfaces. The method is based on single-cycle THz emission by the metasurface inclusions. We show that the spatial amplitude and phase structure of the nonlinear response is mapped to the temporal shape of pulses emitted at certain angles. We specifically show a method for reconstruction of desired pulses, generation of few-cycles pulses with tailored carrier-envelope and all-optical control over the pulse shape by the pump pulse characteristics.

3.
Phys Rev Lett ; 118(24): 243904, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665641

RESUMO

We study experimentally second-harmonic generation from arrays of split-ring resonators at oblique incidence and find conditions of more than 30-fold enhancement of the emitted second harmonic with respect to normal incidence. We show that these conditions agree well with a nonlinear Rayleigh-Wood anomaly relation and the existence of a surface lattice resonance at the second harmonic. The existence of a nonlinear surface lattice resonance is theoretically confirmed by extending the coupled dipole approximation to the nonlinear case. We further show that the localized surface plasmon modes that collectively contribute to the surface lattice resonance are inherently dark modes that become highly bright due to the collective interaction.

4.
Hum Genet ; 134(3): 305-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25560765

RESUMO

Lissencephaly comprises a heterogeneous group of developmental brain disorders of varying severity, involving abnormal cortical gyration. We studied a highly consanguineous Israeli Moslem family with a lethal form of autosomal recessive lissencephaly with cerebellar hypoplasia (LCH). Using microarray-based homozygosity mapping in the reported family, combined with whole exome sequencing in one affected infant, we identified a homozygous splice site mutation g.IVS8+1G>A in cyclin-dependent kinase 5 (CDK5), causing complete skipping of exon 8, and leading to a frame shift and premature stop codon (p.V162SfsX19). The mutation co-segregated with the disease phenotype in all 29 study participants (4 patients and 25 healthy relatives), and was not identified in 200 ethnically matched control chromosomes. The p.V162SfsX19 mutation causes lack of endogenous CDK5 expression in affected dermal fibroblasts and brain tissue at the mRNA and protein levels, consistent with nonsense-mediated mRNA decay. Functional analysis of the p.V162SfsX19 mutation, using a yeast complementation assay, showed loss-of-function of the mutant CDK5 gene product, thereby implicating its role in the pathogenesis of autosomal recessive LCH in the studied family.


Assuntos
Cerebelo/anormalidades , Quinase 5 Dependente de Ciclina/genética , Lisencefalia/genética , Malformações do Sistema Nervoso/genética , Sequência de Bases , Células Cultivadas , Cerebelo/enzimologia , Consanguinidade , Análise Mutacional de DNA , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Feminino , Genes Recessivos , Estudos de Associação Genética , Teste de Complementação Genética , Homozigoto , Humanos , Lactente , Recém-Nascido , Lisencefalia/enzimologia , Masculino , Mutação de Sentido Incorreto , Malformações do Sistema Nervoso/enzimologia , Linhagem
5.
ACS Photonics ; 7(12): 3286-3290, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33363248

RESUMO

Nonlinear plasmonic metasurfaces provide new and promising means to produce broadband terahertz (THz) radiation, due to their compact size and functionalities beyond those achievable with conventional THz emitters. However, they were driven to date only by amplified laser systems, which are expensive and have a large footprint, thus limiting the range of their potential applications. Here we study for the first time the possibility to drive metasurface emitters by low-energy near-infrared femtosecond pulses. We observe broadband THz emission from 40 nm thick metasurfaces and achieve near-infrared to THz conversion efficiencies as high as those of 2500-fold thicker ZnTe crystals. We characterize the THz emission properties and use the metasurface emitter to perform a spectroscopic measurement of α-lactose monohydrate. These results show that nonlinear plasmonic metasurfaces are suitable for integration as emitters in existing compact THz spectroscopy and imaging systems, enhancing their functionalities, and opening the door for a variety of new applications.

6.
Nat Commun ; 10(1): 1778, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992447

RESUMO

The past two decades have witnessed an ever-growing number of emerging applications that utilize terahertz (THz) waves, ranging from advanced biomedical imaging, through novel security applications, fast wireless communications, and new abilities to study and control matter in all of its phases. The development and deployment of these emerging technologies is however held back, due to a substantial lack of simple methods for efficient generation, detection and manipulation of THz waves. Recently it was shown that uniform nonlinear metasurfaces can efficiently generate broadband single-cycle THz pulses. Here we show that judicious engineering of the single-emitters that comprise the metasurface, enables to obtain unprecedented control of the spatiotemporal properties of the emitted THz wavepackets. We specifically demonstrate generation of propagating spatiotemporal quadrupole and few-cycles THz pulses with engineered angular dispersion. Our results place nonlinear metasurfaces as a new promising tool for generating application-tailored THz fields with controlled spatial and temporal characteristics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa