RESUMO
The XP-D/DinG family of DNA helicases contributes to genomic stability in all three domains of life. Here, we investigate the role of one of these proteins, YoaA, of Escherichia coli. In E. coli, YoaA aids in tolerance to the nucleoside azidothymidine (AZT), a DNA replication inhibitor, and physically interacts with a subunit of the DNA polymerase III holoenzyme, HolC. We map the residues of YoaA required for HolC interaction to its C terminus by yeast two-hybrid analysis. We propose that this interaction competes with HolC's interaction with HolD and the rest of the replisome; YoaA indeed inhibits growth when overexpressed, dependent on this interaction region. By gene fusions, we show that YoaA is repressed by LexA and induced in response to DNA damage as part of the SOS response. Induction of YoaA by AZT is biphasic, with an immediate response after treatment and a slower response that peaks in the late log phase of growth. This growth-phase-dependent induction by AZT is not blocked by lexA3 (Ind-), which normally negates its self-cleavage, implying another means to induce the DNA damage response that responds to the nutritional state of the cell. We propose that YoaA helicase activity increases access to the 3' nascent strand during replication; consistent with this, YoaA appears to aid in the removal of potential A-to-T transversion mutations in ndk mutants, which are prone to nucleotide misincorporation. We provide evidence that YoaA and its paralog DinG may also initiate template switching that leads to deletions between tandem repeats in DNA. IMPORTANCE Maintaining genomic stability is crucial for all living organisms. Replication of DNA frequently encounters barriers that must be removed to complete genome duplication. Balancing DNA synthesis with its repair is critical and not entirely understood at a mechanistic level. The YoaA protein, studied here, is required for certain types of DNA repair and interacts in an alternative manner with proteins that catalyze DNA replication. YoaA is part of the well-studied LexA-regulated response to DNA damage, the SOS response. We describe an unusual feature of its regulation that promotes induction after DNA damage as the culture begins to experience starvation. Replication fork repair integrates both DNA damage and nutritional signals. We also show that YoaA affects genomic stability.
Assuntos
DNA Helicases/genética , DNA Polimerase III/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Dano ao DNA/genética , DNA Helicases/metabolismo , DNA Polimerase III/genética , Reparo do DNA , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Instabilidade Genômica/genéticaRESUMO
BACKGROUNDSanaria PfSPZ Vaccine, composed of attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), protects against malaria. We conducted this clinical trial to assess the safety and efficacy of PfSPZ Vaccine in HIV-positive (HIV+) individuals, since the HIV-infection status of participants in mass vaccination programs may be unknown.METHODSThis randomized, double-blind, placebo-controlled trial enrolled 18- to 45-year-old HIV-negative (HIV-) and well-controlled HIV+ Tanzanians (HIV viral load <40 copies/mL, CD4 counts >500 cells/µL). Participants received 5 doses of PfSPZ Vaccine or normal saline (NS) over 28 days, followed by controlled human malaria infection (CHMI) 3 weeks later.RESULTSThere were no solicited adverse events in the 9 HIV- and 12 HIV+ participants. After CHMI, 6 of 6 NS controls, 1 of 5 HIV- vaccinees, and 4 of 4 HIV+ vaccinees were Pf positive by quantitative PCR (qPCR). After immunization, anti-Pf circumsporozoite protein (anti-PfCSP) (isotype and IgG subclass) and anti-PfSPZ antibodies, anti-PfSPZ CD4+ T cell responses, and Vδ2+ γδ CD3+ T cells were nonsignificantly higher in HIV- than in HIV+ vaccinees. Sera from HIV- vaccinees had significantly higher inhibition of PfSPZ invasion of hepatocytes in vitro and antibody-dependent complement deposition (ADCD) and Fcγ3B binding by anti-PfCSP and ADCD by anti-cell-traversal protein for ookinetes and SPZ (anti-PfCelTOS) antibodies.CONCLUSIONSPfSPZ Vaccine was safe and well tolerated in HIV+ vaccinees, but not protective. Vaccine efficacy was 80% in HIV- vaccinees (P = 0.012), whose sera had significantly higher inhibition of PfSPZ invasion of hepatocytes and enrichment of multifunctional PfCSP antibodies. A more potent PfSPZ vaccine or regimen is needed to protect those living with HIV against Pf infection in Africa.TRIAL REGISTRATIONClinicalTrials.gov NCT03420053.FUNDINGEquatorial Guinea Malaria Vaccine Initiative (EGMVI), made up of the Government of Equatorial Guinea Ministries of Mines and Hydrocarbons, and Health and Social Welfare, Marathon Equatorial Guinea Production Limited, Noble Energy, Atlantic Methanol Production Company, and EG LNG; Swiss government, through ESKAS scholarship grant no. 2016.0056; Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH; NIH grant 1U01AI155354-01.
Assuntos
Infecções por HIV , Vacinas Antimaláricas , Malária Falciparum , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Antiprotozoários , População da África Oriental , Infecções por HIV/complicações , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Tanzânia , Soronegatividade para HIV , Soropositividade para HIV , Eficácia de VacinasRESUMO
Beyond the acute illness caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) infection, about one-fifth of infections result in long-term persistence of symptoms despite the apparent clearance of infection. Insights into the mechanisms that underlie postacute sequelae of COVID-19 (PASC) will be critical for the prevention and clinical management of long-term complications of COVID-19. Several hypotheses have been proposed that may account for the development of PASC, including persistence of virus and dysregulation of immune responses. Among the immunological changes noted in PASC, alterations in humoral immunity have been observed in some patient subsets. To begin to determine whether SARS-CoV-2- or other pathogen-specific humoral immune responses evolve uniquely in PASC, we performed comprehensive antibody profiling against SARS-CoV-2, a panel of endemic pathogens, and a panel of routine vaccine antigens using systems serology in two cohorts of patients with preexisting systemic autoimmune rheumatic disease (SARD) who either developed or did not develop PASC. A distinct qualitative shift observed in Fcγ receptor (FcγR) binding was observed in individuals with PASC. Specifically, individuals with PASC harbored weaker FcγR-binding anti-SARS-CoV-2 antibodies and stronger FcγR-binding antibody responses against the endemic coronavirus OC43. Individuals with PASC developed an OC43 S2-specific antibody response with stronger FcγR binding, linked to cross-reactivity across SARS-CoV-2 and common coronaviruses. These findings identify previous coronavirus imprinting as a potential marker for the development of PASC in individuals with SARDs.
Assuntos
Imunidade Humoral , Síndrome de COVID-19 Pós-Aguda , Doenças Reumáticas , SARS-CoV-2 , Doenças Reumáticas/complicações , Doenças Reumáticas/imunologia , SARS-CoV-2/imunologia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Síndrome de COVID-19 Pós-Aguda/complicações , Síndrome de COVID-19 Pós-Aguda/imunologia , Doenças Endêmicas , Receptores Fc/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
Beyond the unpredictable acute illness caused by SARS-CoV-2, one-fifth of infections unpredictably result in long-term persistence of symptoms despite the apparent clearance of infection. Insights into the mechanisms that underlie post-acute sequelae of COVID-19 (PASC) will be critical for the prevention and clinical management of long-term complications of COVID-19. Several hypotheses have been proposed that may account for the development of PASC, including persistence of virus or the dysregulation of immunity. Among the immunological changes noted in PASC, alterations in humoral immunity have been observed in some patient subsets. To begin to determine whether SARS-CoV-2 or other pathogen specific humoral immune responses evolve uniquely in PASC, we performed comprehensive antibody profiling against SARS-CoV-2 and a panel of endemic pathogens or routine vaccine antigens using Systems Serology in a cohort of patients with pre-existing rheumatic disease who either developed or did not develop PASC. A distinct humoral immune response was observed in individuals with PASC. Specifically, individuals with PASC harbored less inflamed and weaker Fcγ receptor binding anti-SARS-CoV-2 antibodies and a significantly expanded and more inflamed antibody response against endemic Coronavirus OC43. Individuals with PASC, further, generated more avid IgM responses and developed an expanded inflammatory OC43 S2-specific Fc-receptor binding response, linked to cross reactivity across SARS-CoV-2 and common coronaviruses. These findings implicate previous common Coronavirus imprinting as a marker for the development of PASC.
RESUMO
Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP), a passive polyclonal antibody therapeutic agent, has had mixed clinical results. Although antibody neutralization is the predominant approach to benchmarking CCP efficacy, CCP may also influence the evolution of the endogenous antibody response. Using systems serology to comprehensively profile severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) functional antibodies of hospitalized people with COVID-19 enrolled in a randomized controlled trial of CCP (ClinicalTrials.gov: NCT04397757), we find that the clinical benefits of CCP are associated with a shift toward reduced inflammatory Spike (S) responses and enhanced nucleocapsid (N) humoral responses. We find that CCP has the greatest clinical benefit in participants with low pre-existing anti-SARS-CoV-2 antibody function and that CCP-induced immunomodulatory Fc glycan profiles and N immunodominant profiles persist for at least 2 months. We highlight a potential mechanism of action of CCP associated with durable immunomodulation, outline optimal patient characteristics for CCP treatment, and provide guidance for development of a different class of COVID-19 hyperinflammation-targeting antibody therapeutic agents.