Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 167(4): 1487-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673779

RESUMO

The quest to determine the genetic basis of root system architecture (RSA) has been greatly facilitated by recent developments in root phenotyping techniques. Methods that are accurate, high throughput, and control for environmental factors are especially attractive for quantitative trait locus mapping. Here, we describe the adaptation of a nondestructive in vivo gel-based root imaging platform for use in maize (Zea mays). We identify a large number of contrasting RSA traits among 25 founder lines of the maize nested association mapping population and locate 102 quantitative trait loci using the B73 (compact RSA)×Ki3 (exploratory RSA) mapping population. Our results suggest that a phenotypic tradeoff exists between small, compact RSA and large, exploratory RSA.


Assuntos
Genoma de Planta/genética , Raízes de Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Mapeamento Cromossômico , Loci Gênicos , Modelos Logísticos , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento
2.
Proc Natl Acad Sci U S A ; 110(18): E1695-704, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23580618

RESUMO

Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci (r(2) = 24-37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops.


Assuntos
Mapeamento Cromossômico , Genoma de Planta/genética , Imageamento Tridimensional , Oryza/anatomia & histologia , Oryza/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Locos de Características Quantitativas/genética , Biomassa , Cruzamentos Genéticos , Endogamia , Modelos Biológicos , Análise Multivariada , Oryza/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Análise de Componente Principal , Característica Quantitativa Herdável , Recombinação Genética/genética , Reprodutibilidade dos Testes
3.
BMC Plant Biol ; 12: 116, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22834569

RESUMO

BACKGROUND: Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. RESULTS: We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. CONCLUSIONS: We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Oryza/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Software , Algoritmos , Processamento Eletrônico de Dados , Genótipo , Oryza/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Interface Usuário-Computador , Fluxo de Trabalho
4.
Methods Mol Biol ; 959: 177-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299675

RESUMO

Root systems are complex structures key to plant health. The three-dimensional distribution of the root system, known as the root architecture, is important for optimal uptake of water and nutrients, as well as anchorage in the soil. Despite the importance of root systems, little is known about the genes that control root architecture, in part because of the difficulty of non-destructively viewing root systems. The Benfey lab has developed a gel-based imaging method to non-invasively examine root system architecture over time. Root systems of a variety of plant species can be quickly imaged daily or weekly. The platform is relatively inexpensive, high-throughput, and is ideally suited for researchers aiming to understand the genetic control of root architecture. Here we describe the application of this method to rice and maize root systems.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa