Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 27(7): e14470, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990920

RESUMO

Species diversity increases with the temporal grain of samples according to the species-time relationship (STR), impacting palaeoecological analyses because the temporal grain (time averaging) of fossil assemblages varies by several orders of magnitude. We predict a positive relation between total abundance and sample size-independent diversity (ADR) in fossil assemblages because an increase in time averaging, determined by a decreasing sediment accumulation, should increase abundance and depress species dominance. We demonstrate that, in contrast to negative ADR of non-averaged living assemblages, the ADR of Holocene fossil assemblages is positive, unconditionally or when conditioned on the energy availability gradient. However, the positive fossil ADR disappears when conditioned on sediment accumulation, demonstrating that ADR is a signature of diversity scaling induced by variable time averaging. Conditioning ADR on sediment accumulation can identify and remove the scaling effect caused by time averaging, providing an avenue for unbiased biodiversity comparisons across space and time.


Assuntos
Biodiversidade , Fósseis , Animais , Sedimentos Geológicos , Densidade Demográfica , Fatores de Tempo , Paleontologia
2.
Glob Chang Biol ; 30(4): e17272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623753

RESUMO

Native biodiversity loss and invasions by nonindigenous species (NIS) have massively altered ecosystems worldwide, but trajectories of taxonomic and functional reorganization remain poorly understood due to the scarcity of long-term data. Where ecological time series are available, their temporal coverage is often shorter than the history of anthropogenic changes, posing the risk of drawing misleading conclusions on systems' current states and future development. Focusing on the Eastern Mediterranean Sea, a region affected by massive biological invasions and the largest climate change-driven collapse of native marine biodiversity ever documented, we followed the taxonomic and functional evolution of an emerging "novel ecosystem", using a unique dataset on shelled mollusks sampled in 2005-2022 on the Israeli shelf. To quantify the alteration of observed assemblages relative to historical times, we also analyzed decades- to centuries-old ecological baselines reconstructed from radiometrically dated death assemblages, time-averaged accumulations of shells on the seafloor that constitute natural archives of past community states. Against expectations, we found no major loss of native biodiversity in the past two decades, suggesting that its collapse had occurred even earlier than 2005. Instead, assemblage taxonomic and functional richness increased, reflecting the diversification of NIS whose trait structure was, and has remained, different from the native one. The comparison with the death assemblage, however, revealed that modern assemblages are taxonomically and functionally much impoverished compared to historical communities. This implies that NIS did not compensate for the functional loss of native taxa, and that even the most complete observational dataset available for the region represents a shifted baseline that does not reflect the actual magnitude of anthropogenic changes. While highlighting the great value of observational time series, our results call for the integration of multiple information sources on past ecosystem states to better understand patterns of biodiversity loss in the Anthropocene.


Assuntos
Biodiversidade , Ecossistema , Mar Mediterrâneo , Fatores de Tempo , Mudança Climática
3.
Proc Biol Sci ; 290(1990): 20221994, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629116

RESUMO

Mesopelagic fishes are an important element of marine food webs, a huge, still mostly untapped food resource and great contributors to the biological carbon pump, whose future under climate change scenarios is unknown. The shrinking of commercial fishes within decades has been an alarming observation, but its causes remain contended. Here, we investigate the effect of warming climate on mesopelagic fish size in the eastern Mediterranean Sea during a glacial-interglacial-glacial transition of the Middle Pleistocene (marine isotope stages 20-18; 814-712 kyr B.P.), which included a 4°C increase in global seawater temperature. Our results based on fossil otoliths show that the median size of lanternfishes, one of the most abundant groups of mesopelagic fishes in fossil and modern assemblages, declined by approximately 35% with climate warming at the community level. However, individual mesopelagic species showed different and often opposing trends in size across the studied time interval, suggesting that climate warming in the interglacial resulted in an ecological shift toward increased relative abundance of smaller sized mesopelagic fishes due to geographical and/or bathymetric distribution range shifts, and the size-dependent effects of warming.


Assuntos
Mudança Climática , Fósseis , Animais , Temperatura , Peixes , Mar Mediterrâneo , Ecossistema
4.
Geol Soc Spec Publ ; 529(1): 223-242, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873493

RESUMO

Line Intercept Transects (LIT), Point Intercept Transects (PIT), and Photoquadrats (PQ) are the most common quantitative sampling techniques in modern and fossil coral reefs. Data from coral reefs obtained by the different methods are generally compared between various reef ages and localities. Quaternary reefs from warmer interglacial periods, which represent climate scenarios projected for the future, are particularly interesting for comparisons with modern reefs. Importantly, fossil reefs differ from modern reefs because they are diagenetically altered and time averaged. While several studies have compared different quantitative methods in modern reefs, very few have dealt with the comparability among fossil and between fossil and modern reefs. Here, we compare LIT, PIT at 10, 20 and 50 cm intervals, and PQ in two Pleistocene reef localities in Egypt. We find that alpha diversity, reef cover and community composition are dependent on the method. Results gained with plotless methods (LIT, PIT) differ strongly from results gained with plot methods (PQ). However, coral cover results are similar between LIT and PIT, and community composition is indistinguishable between the two, but alpha diversity depends on the interval used for PIT. We discuss the implications of our findings for comparing coral reefs of various ages and localities. We recommend surveying Pleistocene reefs with PIT at 20 cm intervals. This is because A) alpha diversity is well captured, B) the amount of time averaging recorded by PIT is reduced compared to PQ, C) the PIT results can be directly compared to reefs analyzed by LIT, and D) the method is less time consuming than LIT and PQ.

5.
Proc Biol Sci ; 288(1942): 20202469, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33402072

RESUMO

Global warming causes the poleward shift of the trailing edges of marine ectotherm species distributions. In the semi-enclosed Mediterranean Sea, continental masses and oceanographic barriers do not allow natural connectivity with thermophilic species pools: as trailing edges retreat, a net diversity loss occurs. We quantify this loss on the Israeli shelf, among the warmest areas in the Mediterranean, by comparing current native molluscan richness with the historical one obtained from surficial death assemblages. We recorded only 12% and 5% of historically present native species on shallow subtidal soft and hard substrates, respectively. This is the largest climate-driven regional-scale diversity loss in the oceans documented to date. By contrast, assemblages in the intertidal, more tolerant to climatic extremes, and in the cooler mesophotic zone show approximately 50% of the historical native richness. Importantly, approximately 60% of the recorded shallow subtidal native species do not reach reproductive size, making the shallow shelf a demographic sink. We predict that, as climate warms, this native biodiversity collapse will intensify and expand geographically, counteracted only by Indo-Pacific species entering from the Suez Canal. These assemblages, shaped by climate warming and biological invasions, give rise to a 'novel ecosystem' whose restoration to historical baselines is not achievable.


Assuntos
Biodiversidade , Ecossistema , Mar Mediterrâneo
6.
Proc Biol Sci ; 287(1929): 20200695, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32546093

RESUMO

Palaeoecological data are unique historical archives that extend back far beyond the last several decades of ecological observations. However, the fossil record of continental shelves has been perceived as too coarse (with centennial-millennial resolution) and incomplete to detect processes occurring at yearly or decadal scales relevant to ecology and conservation. Here, we show that the youngest (Anthropocene) fossil record on the northern Adriatic continental shelf provides decadal-scale resolution that accurately documents an abrupt ecological change affecting benthic communities during the twentieth century. The magnitude and the duration of the twentieth century shift in body size of the bivalve Corbula gibba is unprecedented given that regional populations of this species were dominated by small-size classes throughout the Holocene. The shift coincided with compositional changes in benthic assemblages, driven by an increase from approximately 25% to approximately 70% in median per-assemblage abundance of C. gibba. This regime shift increase occurred preferentially at sites that experienced at least one hypoxic event per decade in the twentieth century. Larger size and higher abundance of C. gibba probably reflect ecological release as it coincides with an increase in the frequency of seasonal hypoxia that triggered mass mortality of competitors and predators. Higher frequency of hypoxic events is coupled with a decline in the depth of intense sediment mixing by burrowing benthic organisms from several decimetres to less than 20 cm, significantly improving the stratigraphic resolution of the Anthropocene fossil record and making it possible to detect sub-centennial ecological changes on continental shelves.


Assuntos
Bivalves/fisiologia , Animais , Ecossistema , Fósseis
7.
Sedimentology ; 66(3): 781-807, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30983639

RESUMO

Carbonate sediments in non-vegetated habitats on the north-east Adriatic shelf are dominated by shells of molluscs. However, the rate of carbonate molluscan production prior to the 20th century eutrophication and overfishing on this and other shelves remains unknown because: (i) monitoring of ecosystems prior to the 20th century was scarce; and (ii) ecosystem history inferred from cores is masked by condensation and mixing. Here, based on geochronological dating of four bivalve species, carbonate production during the Holocene is assessed in the Gulf of Trieste, where algal and seagrass habitats underwent a major decline during the 20th century. Assemblages of sand-dwelling Gouldia minima and opportunistic Corbula gibba are time-averaged to >1000 years and Corbula gibba shells are older by >2000 years than shells of co-occurring Gouldia minima. This age difference is driven by temporally disjunct production of two species coupled with decimetre-scale mixing. Stratigraphic unmixing shows that Corbula gibba declined in abundance during the highstand phase and increased again during the 20th century. In contrast, one of the major contributors to carbonate sands - Gouldia minima - increased in abundance during the highstand phase, but declined to almost zero abundance over the past two centuries. Gouldia minima and herbivorous gastropods associated with macroalgae or seagrasses are abundant in the top-core increments but are rarely alive. Although Gouldia minima is not limited to vegetated habitats, it is abundant in such habitats elsewhere in the Mediterranean Sea. This live-dead mismatch reflects the difference between highstand baseline communities (with soft-bottom vegetated zones and hard-bottom Arca beds) and present-day oligophotic communities with organic-loving species. Therefore, the decline in light penetration and the loss of vegetated habitats with high molluscan production traces back to the 19th century. More than 50% of the shells on the sea floor in the Gulf of Trieste reflect inactive production that was sourced by heterozoan carbonate factory in algal or seagrass habitats.

8.
Ecology ; 99(5): 1051-1062, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29516476

RESUMO

Beta diversity, the compositional variation among communities or assemblages, is crucial to understanding the principles of diversity assembly. The mean pairwise proportional dissimilarity expresses overall heterogeneity of samples in a data set and is among the most widely used and most robust measures of beta diversity. Obtaining a complete list of taxa and their abundances requires substantial taxonomic expertise and is time consuming. In addition, the information is generally incomplete due to sampling biases. Based on the concept of the ecological significance of dominant taxa, we explore whether determining proportional dissimilarity can be simplified based on dominant species. Using simulations and six case studies, we assess the correlation between complete community compositional data and reduced subsets of a varying number of dominant species. We find that gross beta diversity is usually depicted accurately when only the 80th percentile or five of the most abundant species of each site is considered. In data sets with very high evenness, at least the 10 most abundant species should be included. Focusing on dominant species also maintains the rank-order of beta diversity among sites. Our new approach will allow ecologists and paleobiologists to produce a far greater amount of data on diversity patterns with less time and effort, supporting conservation studies and basic science.


Assuntos
Biodiversidade , Ecologia
9.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28768884

RESUMO

Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems.


Assuntos
Bivalves , Tamanho Corporal , Mudança Climática , Espécies Introduzidas , Animais , Ecossistema , Oceano Índico , Mar Mediterrâneo
10.
Limnol Oceanogr Methods ; 14(11): 698-717, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28111529

RESUMO

Coring is one of several standard procedures to extract sediments and their faunas from open marine, estuarine, and limnic environments. Achieving sufficiently deep penetration, obtaining large sediment volumes in single deployments, and avoiding sediment loss upon retrieval remain problematic. We developed a piston corer with a diameter of 16 cm that enables penetration down to 1.5 m in a broad range of soft bottom types, yields sufficient material for multiple analyses, and prevents sediment loss due to a specially designed hydraulic core catcher. A novel extrusion system enables very precise slicing and preserves the original sediment stratification by keeping the liners upright. The corer has moderate purchase costs and a robust and simple design that allows for a deployment from relatively small vessels as available at most marine science institutions. It can easily be operated by two to three researchers rather than by specially trained technicians. In the northern Adriatic Sea, the corer successfully extracted more than 50 cores from a range of fine mud to coarse sand, at water depths from three to 45 m. The initial evaluation of the cores demonstrated their usefulness for fauna sequences along with heavy metal, nutrient and pollutant analyses. Their length is particularly suited for historical ecological work requiring sedimentary and faunal sequences to reconstruct benthic communities over the last millennia.

11.
Proc Biol Sci ; 281(1795)2014 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-25297863

RESUMO

Invertebrate lineages tend to originate and become extinct at a higher rate in onshore than in offshore habitats over long temporal durations (more than 10 Myr), but it remains unclear whether this pattern scales down to durations of stages (less than 5 Myr) or even sequences (less than 0.5 Myr). We assess whether onshore-offshore gradients in long-term turnover between the tropical Eocene and the warm-temperate Plio-Pleistocene can be extrapolated from gradients in short-term turnover, using abundances of molluscan species from bulk samples in the northeast Atlantic Province. We find that temporal turnover of metacommunities does not significantly decline with depth over short durations (less than 5 Myr), but significantly declines with depth between the Eocene and Plio-Pleistocene (approx. 50 Myr). This decline is determined by a higher onshore extinction of Eocene genera and families, by a higher onshore variability in abundances of genera and families, and by an onshore expansion of genera and families that were frequent offshore in the Eocene. Onshore-offshore decline in turnover thus emerges only over long temporal durations. We suggest that this emergence is triggered by abrupt and spatially extensive climatic or oceanographic perturbations that occurred between the Eocene and Plio-Pleistocene. Plio-Pleistocene metacommunities show a high proportion of bathymetric generalists, in contrast to Eocene metacommunities. Accordingly, the net cooling and weaker thermal gradients may have allowed offshore specialists to expand into onshore habitats and maintain their presence in offshore habitats.


Assuntos
Distribuição Animal , Biodiversidade , Evolução Biológica , Moluscos/fisiologia , Animais , Oceano Atlântico , Fósseis , Oceanos e Mares
12.
PeerJ ; 12: e17425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832036

RESUMO

We report new data on non-indigenous invertebrates from the Mediterranean Sea (four ostracods and 20 molluscs), including five new records for the basin: the ostracods Neomonoceratina iniqua, Neomonoceratina aff. mediterranea, Neomonoceratina cf. entomon, Loxoconcha cf. gisellae (Arthropoda: Crustacea)-the first records of non-indigenous ostracods in the Mediterranean-and the bivalve Striarca aff. symmetrica (Mollusca). Additionally, we report for the first time Electroma vexillum from Israel, and Euthymella colzumensis, Joculator problematicus, Hemiliostraca clandestina, Pyrgulina nana, Pyrgulina microtuber, Turbonilla cangeyrani, Musculus aff. viridulus and Isognomon bicolor from Cyprus. We also report the second record of Fossarus sp. and of Cerithiopsis sp. cf. pulvis in the Mediterranean Sea, the first live collected specimens of Oscilla galilae from Cyprus and the northernmost record of Gari pallida in Israel (and the Mediterranean). Moreover, we report the earliest records of Rugalucina angela, Ervilia scaliola and Alveinus miliaceus in the Mediterranean Sea, backdating their first occurrence in the basin by 3, 5 and 7 years, respectively. We provide new data on the presence of Spondylus nicobaricus and Nudiscintilla aff. glabra in Israel. Finally, yet importantly, we use both morphological and molecular approaches to revise the systematics of the non-indigenous genus Isognomon in the Mediterranean Sea, showing that two species currently co-occur in the basin: the Caribbean I. bicolor, distributed in the central and eastern Mediterranean, and the Indo-Pacific I. aff. legumen, at present reported only from the eastern Mediterranean and whose identity requires a more in-depth taxonomic study. Our work shows the need of taxonomic expertise and investigation, the necessity to avoid the unfounded sense of confidence given by names in closed nomenclature when the NIS belong to taxa that have not enjoyed ample taxonomic work, and the necessity to continue collecting samples-rather than relying on visual censuses and bio-blitzes-to enable accurate detection of non-indigenous species.


Assuntos
Bivalves , Animais , Mar Mediterrâneo , Bivalves/classificação , Crustáceos/classificação , Moluscos/classificação , Israel , Distribuição Animal , Espécies Introduzidas
13.
Palaeogeogr Palaeoclimatol Palaeoecol ; 370(C): 77-91, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23407873

RESUMO

Life-death (LD) studies of shelly macrofauna are important to evaluate how well a fossil assemblage can reflect the original living community, but can also serve as a proxy for recent ecological shifts in marine habitats and in practice this has to be distinguished using taphonomic preservation pattern and estimates of time-averaging. It remains to be rigorously evaluated, however, how to distinguish between sources of LD disagreement. In addition, death assemblages (DAs) also preserve important information on regional diversity which is not available from single censuses of the life assemblages (LAs). The northern Adriatic Sea is an ecosystem under anthropogenic pressure, and we studied the distribution and abundance of living and dead bivalve and gastropod species in the physically stressful environments (tidal flat and shallow sublittoral soft bottoms) associated with the delta of the Isonzo River (Gulf of Trieste). Specifically we evaluated the fidelity of richness, evenness, abundance, habitat discrimination and beta diversity. A total of 10,740 molluscs from fifteen tidal flat and fourteen sublittoral sites were analyzed for species composition and distribution of living and dead molluscs. Of 78 recorded species, only eleven were numerically abundant. There were many more dead than living individuals and rarefied species richness in the DA was higher at all spatial scales, but the differences are lower in habitats and in the region than at individual stations. Evenness was always higher in death assemblages, and probably due to temporally more variable LAs the differences are stronger in the sublittoral habitats. Distinct assemblages characterized intertidal and sublittoral habitats, and the distribution and abundance of empty shells generally corresponded to that of the living species. Death assemblages have lower beta diversity than life assemblages, but empty shells capture compositional differences between habitats to a higher degree than living shells. More samples would be necessary to account for the diversity of living molluscs in the study area, which is, however, well recorded in the death assemblages. There is no indication of a major environmental change over the last decades in this area, but due to the long history of anthropogenic pressure here, such a potential impact might be preserved in historical layers of the deeper sedimentary record.

14.
J Exp Mar Biol Ecol ; 411(5): 23-33, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22298914

RESUMO

Hermit crabs play an important role in the Northern Adriatic Sea due to their abundance, wide range of symbionts, and function in structuring the benthic community. Small-scale (0.25 m(2)) hypoxia and anoxia were experimentally generated on a sublittoral soft bottom in 24 m depth in the Gulf of Trieste. This approach successfully simulates the seasonal low dissolved oxygen (DO) events here and enabled studying the behaviour and mortality of the hermit crab Paguristes eremita. The crabs exhibited a sequence of predictable stress responses and ultimately mortality, which was correlated with five oxygen thresholds. Among the crustaceans, which are a sensitive group to oxygen depletion, P. eremita is relatively tolerant. Initially, at mild hypoxia (2.0 to 1.0 ml l(- 1) DO), hermit crabs showed avoidance by moving onto better oxygenated, elevated substrata. This was accompanied by a series of responses including decreased locomotory activity, increased body movements and extension from the shell. During a moribund phase at severe hypoxia (0.5 to 0.01 ml l(- 1) DO), crabs were mostly immobile in overturned shells and body movements decreased. Anoxia triggered emergence from the shell, with a brief locomotion spurt of shell-less crabs. The activity pattern of normally day-active crabs was altered during hypoxia and anoxia. Atypical interspecific interactions occurred: the crab Pisidia longimana increasingly aggregated on hermit crab shells, and a hermit crab used the emerged infaunal sea urchin Schizaster canaliferus as an elevated substrate. Response patterns varied somewhat according to shell size or symbiont type (the sponge Suberites domuncula). Mortality occurred after extended anoxia (~ 1.5 d) and increased hydrogen sulphide levels (H(2)S ~ 128 µmol). The relative tolerance of crabs and certain symbionts (e.g. the sea anemone Calliactis parasitica) - as potential survivors and recolonizers of affected areas - may influence and promote community recovery after oxygen crises.

15.
Environ Biol Fishes ; 105(10): 1269-1286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313612

RESUMO

Evaluation of the impact of climatic changes on the composition of fish assemblages requires quantitative measures that can be compared across space and time. In this respect, the mean temperature of the catch (MTC) approach has been proven to be a very useful tool for monitoring the effect of climate change on fisheries catch. Lack of baseline data and deep-time analogues, however, prevent a more comprehensive evaluation. In this study, we explore the applicability of the mean temperature approach to fossil fish faunas by using otolith assemblage data from the eastern Mediterranean and the northern Adriatic coastal environments corresponding to the last 8000 years (Holocene) and the interval 2.58-1.80 Ma B. P. (Early Pleistocene). The calculated mean temperatures of the otolith assemblage (MTO) range from 13.5 to 17.3 °C. This case study shows that the MTO can successfully capture compositional shifts in marine fish faunas based on variations in their climatic affinity driven by regional climate differences. However, the index is sensitive to methodological choices and thus requires standardized sampling. Even though theoretical and methodological issues prevent direct comparisons between MTO and MTC values, the MTO offers a useful quantitative proxy for reconstructing spatial and temporal trends in the biogeographic affinity of fossil otolith assemblages.

16.
Palaeogeogr Palaeoclimatol Palaeoecol ; 304(3-4): 247-261, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22021937

RESUMO

Pollen analyses have been proven to possess the possibility to decipher rapid vegetational and climate shifts in Neogene sedimentary records. Herein, a c. 21-kyr-long transgression-regression cycle from the Lower Austrian locality Stetten is analysed in detail to evaluate climatic benchmarks for the early phase of the Middle Miocene Climate Optimum and to estimate the pace of environmental change.Based on the Coexistence Approach, a very clear signal of seasonality can be reconstructed. A warm and wet summer season with c. 204-236 mm precipitation during the wettest month was opposed by a rather dry winter season with precipitation of c. 9-24 mm during the driest month. The mean annual temperature ranged between 15.7 and 20.8 °C, with about 9.6-13.3 °C during the cold season and 24.7-27.9 °C during the warmest month. In contrast, today's climate of this area, with an annual temperature of 9.8 °C and 660 mm rainfall, is characterized by the winter season (mean temperature: -1.4 °C, mean precipitation: 39 mm) and a summer mean temperature of 19.9 °C (mean precipitation: 84 mm).Different modes of environmental shifts shaped the composition of the vegetation. Within few millennia, marshes and salt marshes with abundant Cyperaceae rapidly graded into Taxodiaceae swamps. This quick but gradual process was interrupted by swift marine ingressions which took place on a decadal to centennial scale. The transgression is accompanied by blooms of dinoflagellates and of the green alga Prasinophyta and an increase in Abies and Picea. Afterwards, the retreat of the sea and the progradation of estuarine and wetland settings were a gradual progress again.Despite a clear sedimentological cyclicity, which is related to the 21-kyr precessional forcing, the climate data show little variation. This missing pattern might be due to the buffering of the precessional-related climate signal by the subtropical vegetation. Another explanation could be the method-inherent broad range of climate-parameter estimates that could cover small scale climatic changes.

17.
Mar Pollut Bull ; 171: 112703, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34330002

RESUMO

The Eastern Mediterranean Sea hosts more non-indigenous species than any other marine region, yet their impacts on the native biota remain poorly understood. Focusing on mollusks from the Israeli rocky intertidal, we explored the hypothesis that this abiotically harsh habitat supports a limited trait diversity, and thus may promote niche overlap and competition between native and non-indigenous species. Indeed, native and non-indigenous assemblage components often had a highly similar trait composition, caused by functionally similar native (Patella caerulea) and non-indigenous (Cellana rota) limpets. Body size of P. caerulea decreased with increasing C. rota prevalence, but not vice versa, indicating potential asymmetric competition. Although both species have coexisted in Israel for >15 years, a rapid 'replacement' of native limpets by C. rota has been reported for a thermally polluted site, suggesting that competition and regionally rapid climate-related seawater warming might interact to progressively erode native limpet performance along the Israeli coast.


Assuntos
Gastrópodes , Animais , Ecossistema , Mar Mediterrâneo , Moluscos , Água do Mar
18.
PeerJ ; 8: e9139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461832

RESUMO

Beta diversity, the compositional variation among communities, is often associated with environmental gradients. Other drivers of beta diversity include stochastic processes, priority effects, predation, or competitive exclusion. Temporal turnover may also explain differences in faunal composition between fossil assemblages. To assess the drivers of beta diversity in reef-associated soft-bottom environments, we investigate community patterns in a Middle to Late Triassic reef basin assemblage from the Cassian Formation in the Dolomites, Northern Italy, and compare results with a Recent reef basin assemblage from the Northern Bay of Safaga, Red Sea, Egypt. We evaluate beta diversity with regard to age, water depth, and spatial distance, and compare the results with a null model to evaluate the stochasticity of these differences. Using pairwise proportional dissimilarity, we find very high beta diversity for the Cassian Formation (0.91 ± 0.02) and slightly lower beta diversity for the Bay of Safaga (0.89 ± 0.04). Null models show that stochasticity only plays a minor role in determining faunal differences. Spatial distance is also irrelevant. Contrary to expectations, there is no tendency of beta diversity to decrease with water depth. Although water depth has frequently been found to be a key factor in determining beta diversity, we find that it is not the major driver in these reef-associated soft-bottom environments. We postulate that priority effects and the biotic structuring of the sediment may be key determinants of beta diversity.

19.
Palaeogeogr Palaeoclimatol Palaeoecol ; 270(1-2): 102-115, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21179376

RESUMO

A detailed ultra-high-resolution analysis of a 37-cm-long core of Upper Miocene lake sediments of the long-lived Lake Pannon has been performed. Despite a general stable climate at c. 11-9 Ma, several high-frequency oscillations of the paleoenvironments and depositional environments are revealed by the analysis over a short time span of less than 1000 years. Shifts of the lake level, associated with one major 3rd order flooding are reflected by all organisms by a cascade of environmental changes on a decadal scale. Within a few decades, the pollen record documents shifting vegetation zones due to the landward migration of the coast; the dinoflagellate assemblages switch towards "offshore-type" due to the increasing distance to the shore; the benthos is affected by low oxygen conditions due to the deepening. This general trend is interrupted by smaller scale cycles, which lack this tight interconnection. Especially, the pollen data document a clear cyclicity that is expressed by iterative low pollen concentration events. These "negative" cycles are partly reflected by dinoflagellate blooms suggesting a common trigger-mechanism and a connection between terrestrial environments and surface waters of Lake Pannon. The benthic fauna of the core, however, does not reflect these surface water cycles. This forcing mechanism is not understood yet but periodic climatic fluctuations are favoured as hypothesis instead of further lake level changes. Short phases of low precipitation, reducing pollen production and suppressing effective transport by local streams, might be a plausible mechanism. This study is the first hint towards solar activity related high-frequency climate changes during the Vallesian (Late Miocene) around Lake Pannon and should encourage further ultra-high-resolution analyses in the area.

20.
Mar Pollut Bull ; 135: 361-375, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301048

RESUMO

An increase in the frequency of hypoxia, mucilages, and sediment pollution occurred in the 20th century in the Adriatic Sea. To assess the effects of these impacts on bivalves, we evaluate temporal changes in size structure of the opportunistic bivalve Corbula gibba in four sediment cores that cover the past ~500 years in the northern, eutrophic part and ~10,000 years in the southern, mesotrophic part of the Gulf of Trieste. Assemblages exhibit a stable size structure during the highstand phase but shift to bimodal distributions and show a significant increase in the 95th percentile size during the 20th century. This increase in size by 2-3 mm is larger than the northward size increase associated with the transition from mesotrophic to eutrophic habitats. It coincides with increasing concentrations of total organic carbon and nitrogen, and can be related to enhanced food supply and by the tolerance of C. gibba to hypoxia.


Assuntos
Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Sedimentos Geológicos/química , Oxigênio/metabolismo , Animais , Tamanho Corporal , Ecossistema , Monitoramento Ambiental , Mar Mediterrâneo , Nitrogênio/análise , Nitrogênio/metabolismo , Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa