Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 14(1): e1002357, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26785119

RESUMO

Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse.


Assuntos
Biodiversidade , Aves , Conservação dos Recursos Naturais , Florestas , Mamíferos , Animais , Ecologia/métodos , Clima Tropical
2.
For Policy Econ ; 96: 38-53, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30393458

RESUMO

Wild foods and other nonfood NTFPs are important for improving food security and supplementing incomes in rural peoples' livelihoods. However, studies on the importance of NTFPs to rural communities are often limited to a few select sites and are conducted in areas that are already known to have high rates of NTFP use. To address this, we examined the role of geographic and household level variables in determining whether a household would report collecting wild foods and other nonfood NTFP across 25 agro-ecological landscapes in Tanzania, Rwanda, Uganda and Ghana. The aim of this study was to contribute to the literature on NTFP collection in Africa and to better understand where people depend on these resources by drawing on a broad range of sites that were highly variable in geographic characteristics as well as rates of NTFP collection to provide a better understanding of the determinants of NTFP collection. We found that geographic factors, such as the presence of forests, non-forest natural areas like grasslands and shrublands, and lower population density significantly predict whether a household will report collecting NTFP, and that these factors have greater explanatory power than household characteristics.

3.
Ecol Appl ; 26(4): 1098-111, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27509751

RESUMO

The conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied ground-dwelling mammal and bird (hereafter "wildlife") diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multi-objective conservation planning when fine scale data on wildlife are lacking.


Assuntos
Biodiversidade , Aves/fisiologia , Carbono , Florestas , Mamíferos/fisiologia , Clima Tropical , Animais , Conservação dos Recursos Naturais , Monitoramento Ambiental
4.
Environ Manage ; 53(1): 94-111, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23291978

RESUMO

Humans have transformed much of Earth's land surface, giving rise to loss of biodiversity, climate change, and a host of other environmental issues that are affecting human and biophysical systems in unexpected ways. To confront these problems, environmental managers must consider human and landscape systems in integrated ways. This means making use of data obtained from a broad range of methods (e.g., sensors, surveys), while taking into account new findings from the social and biophysical science literatures. New integrative methods (including data fusion, simulation modeling, and participatory approaches) have emerged in recent years to address these challenges, and to allow analysts to provide information that links qualitative and quantitative elements for policymakers. This paper brings attention to these emergent tools while providing an overview of the tools currently in use for analysis of human-landscape interactions. Analysts are now faced with a staggering array of approaches in the human-landscape literature--in an attempt to bring increased clarity to the field, we identify the relative strengths of each tool, and provide guidance to analysts on the areas to which each tool is best applied. We discuss four broad categories of tools: statistical methods (including survival analysis, multi-level modeling, and Bayesian approaches), GIS and spatial analysis methods, simulation approaches (including cellular automata, agent-based modeling, and participatory modeling), and mixed-method techniques (such as alternative futures modeling and integrated assessment). For each tool, we offer an example from the literature of its application in human-landscape research. Among these tools, participatory approaches are gaining prominence for analysts to make the broadest possible array of information available to researchers, environmental managers, and policymakers. Further development of new approaches of data fusion and integration across sites or disciplines pose an important challenge for future work in integrating human and landscape components.


Assuntos
Planeta Terra , Atividades Humanas , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Humanos , Modelos Teóricos , Análise de Regressão
5.
Sustainability ; 15(12)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39015363

RESUMO

Addressing the global challenges of desertification, land degradation, and drought (DLDD), and their impacts on achieving sustainable development goals for coupled human-environmental systems is a key component of the 2030 Agenda for Sustainable Development. In particular, Sustainable Development Goal (SDG) 15.3 aims to, "by 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought and floods, and strive to achieve a land degradation-neutral world". Addressing this challenge is essential for improving the livelihoods of those most affected by DLDD and for safeguarding against the most extreme effects of climate change. This paper introduces a conceptual framework for improved monitoring of DLDD in the context of United Nations Convention to Combat Desertification (UNCCD) Strategic Objective 2 (SO2) and its expected impacts: food security and adequate access to water for people in affected areas are improved; the livelihoods of people in affected areas are improved and diversified; local people, especially women and youth, are empowered and participate in decision-making processes in combating DLDD; and migration forced by desertification and land degradation is substantially reduced. While it is critical to develop methods and tools for assessing DLDD, work is needed first to provide a conceptual roadmap of the human dimensions of vulnerability in relation to DLDD, especially when attempting to create a globally standardized monitoring approach.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa