Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; : 108176, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128794

RESUMO

Silkmoths (Bombycidae) have a disjunct distribution predominantly in the Southern Hemisphere and Asia. Here we reconstruct the phylogenetic history of the family to test competing hypotheses on their origin and assess how vicariance and long-distance dispersal shaped their current distribution. We sequenced up to 5,074 base pairs from six loci (COI, EF1-α, wgl, CAD, GAPDH, and RpS5) to infer the historical biogeography of Bombycidae. The multilocus dataset covering 20 genera (80 %) of the family, including 17 genera (94 %) of Bombycinae and 3 genera (43 %) of Epiinae, was used to estimate phylogenetic patterns, divergence times and biogeographic reconstruction. Dating estimates extrapolated from secondary calibration sources indicate the Bombycidae stem-group originated approximately 64 Mya. The subfamilies Epiinae (South America) and Bombycinae (Australia, Asia, East Palaearctic, and Africa) were reciprocally monophyletic, diverging at c. 56 Mya (95 % credibility interval: 66-46 Mya). The 'basal' lineage of Bombycinae - Gastridiota + Elachyophtalma - split from the rest of Bombycinae c. 53 Mya (95 % credibility interval: 63-43 Mya). Gastridiota is a monobasic genus with a relictual distribution in subtropical forests of eastern Australia. The Oriental and African genera comprised a monophyletic group: the Oriental region was inferred to have been colonized from a long-distance dispersal event from Australia to South-East Asia c. 53 Mya or possibly later (c. 36-26 Mya); Africa was subsequently colonized by dispersal from Asia c. 16 Mya (95 % credibility interval: 21-12 Mya). Based on the strongly supported phylogenetic relationships and estimates of divergence times, we conclude that Bombycidae had its origin in the fragment of Southern Gondwana consisting of Australia, Antarctica and South America during the Paleocene. The disjunction between South America (Epiinae) and Australia (Bombycinae) is best explained by vicariance in the Eocene, whereas the disjunct distribution in Asia and Africa is best explained by more recent dispersal events.

2.
J Evol Biol ; 37(8): 967-977, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824398

RESUMO

In response to environmental and human-imposed selective pressures, agroecosystem pests frequently undergo rapid evolution, with some species having a remarkable capacity to rapidly develop pesticide resistance. Temporal sampling of genomic data can comprehensively capture such adaptive changes over time, for example, by elucidating allele frequency shifts in pesticide resistance loci in response to different pesticides. Here, we leveraged museum specimens spanning over a century of collections to generate temporal contrasts between pre- and post-insecticide populations of an agricultural pest moth, Helicoverpa armigera. We used targeted exon sequencing of 254 samples collected across Australia from the pre-1950s (prior to insecticide introduction) to the 1990s, encompassing decades of changing insecticide use. Our sequencing approach focused on genes that are known to be involved in insecticide resistance, environmental sensation, and stress tolerance. We found an overall lack of spatial and temporal population structure change across Australia. In some decades (e.g., 1960s and 1970s), we found a moderate reduction of genetic diversity, implying stochasticity in evolutionary trajectories due to genetic drift. Temporal genome scans showed extensive evidence of selection following insecticide use, although the majority of selected variants were low impact. Finally, alternating trajectories of allele frequency change were suggestive of potential antagonistic pleiotropy. Our results provide new insights into recent evolutionary responses in an agricultural pest and show how temporal contrasts using museum specimens can improve mechanistic understanding of rapid evolution.


Assuntos
Resistência a Inseticidas , Inseticidas , Mariposas , Museus , Seleção Genética , Animais , Mariposas/genética , Mariposas/efeitos dos fármacos , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Austrália , Deriva Genética
3.
Curr Biol ; 34(16): 3685-3697.e6, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39067451

RESUMO

The extraordinary diversification of beetles on Earth is a textbook example of adaptive evolution. Yet, the tempo and drivers of this super-radiation remain largely unclear. Here, we address this problem by investigating macroevolutionary dynamics in darkling beetles (Coleoptera: Tenebrionidae), one of the most ecomorphologically diverse beetle families (with over 30,000 species). Using multiple genomic datasets and analytical approaches, we resolve the long-standing inconsistency over deep relationships in the family. In conjunction with a landmark-based dataset of body shape morphology, we show that the evolutionary history of darkling beetles is marked by ancient rapid radiations, frequent ecological transitions, and rapid bursts of morphological diversification. On a global scale, our analyses uncovered a significant pulse of phenotypic diversification proximal to the Cretaceous-Palaeogene (K/Pg) mass extinction and convergence of body shape associated with recurrent ecological specializations. On a regional scale, two major Australasian radiations, the Adeliini and the Heleine clade, exhibited contrasting patterns of ecomorphological diversification, representing phylogenetic niche conservatism versus adaptive radiation. Our findings align with the Simpsonian model of adaptive evolution across the macroevolutionary landscape and highlight a significant role of ecological opportunity in driving the immense ecomorphological diversity in a hyperdiverse beetle group.


Assuntos
Evolução Biológica , Besouros , Filogenia , Animais , Besouros/genética , Besouros/anatomia & histologia , Besouros/fisiologia , Adaptação Biológica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa