Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Pharm ; 20(3): 1490-1499, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36490379

RESUMO

A deep understanding of the interactions between micelle-like aggregates and antineoplastic drugs is paramount to control their adequate delivery. Herein, Poly(NIPAM-co-SPMA) copolymer nanocarriers were synthesized according to our previous published methodology, and the loading and release of poorly and highly water-soluble doxorubicin forms (Dox and Dox-HCl, respectively) were evaluated upon UV light irradiation and pH-variation stimuli. Capillary electrophoresis (CE) coupled to a fluorescence detector (LIF) allowed us to specifically characterize these systems and deeply study the loading and release processes. For this purpose, varying concentrations of doxorubicin were tested, and the loading/release rates were indirectly quantified thanks to the "free" doxorubicin concentration in solution. This study highlighted that Dox loading (9.4 µg/mg) was more effective than Dox-HCl loading (5.5 µg/mg). In contrast, 68 and 74% of Dox-HCl were respectively released after 2 min upon pH variation (from 7.4 to 6.0) and combined UV + pH 6.0 stimuli, while only 27% of Dox was invariably released upon application of the same stimuli. These results are coherent with the characteristics of both DoxHCl and Dox: Electrostatic interactions between Dox-HCl and the micelle-membrane structure (NIPAM) seemed predominant, while hydrophobic interactions were expected between Dox and the SP moieties at the inner part of the micelle-like aggregate, leading to different behaviors in both loading and release of the two doxorubicin forms. For doxorubicin loading concentrations higher than 3 µM, the electrophoretic profiles presented an additional peak. Thanks to CE characterizations, this peak was attributed to the formation of a complex formed between the nonaggregated copolymer and the doxorubicin molecules. This report therefore undergoes deep characterization of the dynamic formation of different micelle/drug complexes involved in the global drug-delivery behavior and therefore contributes to the development of more effective stimuli-responsive nanocarriers.


Assuntos
Antineoplásicos , Micelas , Raios Ultravioleta , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química
2.
Electrophoresis ; 43(20): 2044-2048, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948488

RESUMO

A low-cost and straightforward hybrid NOA (Norland optical adhesive) 81-glass microchip electrophoresis device was designed and developed for protein separation using indirect fluorescence detection. This new microchip was first characterized in terms of surface charge density via electroosmotic mobility measurement and stability over time. A systematic determination of the electroosmotic mobility (µeo ) over a wide pH range (2-10) and at various ionic strengths (20-50 mM) was developed for the first time via the neutral marker approach in an original simple frontal methodology. The evolution of µeo was proved consistent with the silanol and thiol functions arising from the glass and the NOA materials, respectively. The repeatability and reproducibility of the measurements on different microchips (RSD < 14%) and within 15 days (less than 5% decrease) were successfully demonstrated. The microchip was then applied for the efficient electrophoretic separation of proteins in a zonal mode coupled with indirect fluorescence detection, which is, to our knowledge, the first proof of concept of capillary zone electrophoresis in this hybrid microsystem.


Assuntos
Eletroforese em Microchip , Eletroforese Capilar/métodos , Eletroforese em Microchip/métodos , Vidro/química , Proteínas/análise , Reprodutibilidade dos Testes , Compostos de Sulfidrila
3.
Analyst ; 146(17): 5245-5254, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34296726

RESUMO

The affinity between functional nanoparticles (NPs) and proteins could determine the efficacy of nanoprobes, nanosensors, nanocarriers, and many other devices for biomedical applications. Therefore, it is necessary to develop analytical strategies to accurately evaluate the magnitude of these protein corona interactions in physiological media. In this work, different electrokinetic strategies were implemented to accurately determine the interactions between PEGylated ZnGa1.995Cr0.005O4 persistent luminescent NPs (ZGO-PEG) and two important serum proteins: human serum albumin (HSA), the most abundant serum protein, and apolipoprotein-E (ApoE), associated with the active transport of NPs through the blood-brain barrier. Firstly, the injection of ZGO-PEG in a background electrolyte (BGE) containing individual proteins allowed an affinity study to separately characterize each NP-protein system. Then, the same procedure was applied in a buffer containing a mixture of the two proteins at different molar ratios. Finally, the NPs were pre-incubated with one protein and thereafter electrokinetically separated in a BGE containing the second protein. These analytical strategies revealed the mechanisms (comparative, cooperative or competitive systems) and the magnitude of their interactions, resulting in all cases in notably higher affinity and stability between ZGO-PEG and ApoE (Ka = 1.96 ± 0.25 × 1010 M-M) compared to HSA (Ka = 4.60 ± 0.41 × 106 M-M). For the first time, the inter-protein ApoE/HSA interactions with ZGO-PEG were also demonstrated, highlighting the formation of a ternary ZGO-PEG/ApoE/HSA nanocomplex. These results open the way for a deeper understanding of the protein corona formation, and the development of versatile optical imaging applications for ZGO-PEG and other systemically delivered nanoprobes ideally vectorized to the brain.


Assuntos
Nanopartículas , Coroa de Proteína , Albuminas , Apolipoproteínas , Apolipoproteínas E , Humanos , Luminescência
4.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361740

RESUMO

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.


Assuntos
Materiais Biocompatíveis/síntese química , Portadores de Fármacos/síntese química , Nanoestruturas/química , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Sequência de Aminoácidos , Animais , Materiais Biocompatíveis/farmacocinética , Portadores de Fármacos/farmacocinética , Composição de Medicamentos/métodos , Humanos , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Peptídeos/farmacocinética , Distribuição Tecidual
5.
Anal Bioanal Chem ; 412(19): 4595-4608, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32494917

RESUMO

Waste printed circuit boards are a major source of strategic materials such as platinum group metals since they are used for the fabrication of technological devices, such as hard drive discs, capacitors, and diodes. Because of the high cost of platinum, palladium, and gold (> 25 k€/kg), an economic and environmental challenge is their recycling from printed circuit boards that represent around 2% weight of electronic equipment. Hydrometallurgical treatments allow the recovery of these metals in solution, with a high recovery rate for a leaching liquor made of thiourea in hydrochloric acid. So as to develop an efficient recycling process from this leach liquor, one requires the speciation of these strategic metals, as well as their extraction and quantitation in the mixture. For this purpose, platinum, palladium, and gold were dissolved in model leach liquors made of hydrochloric acid and thiourea at low concentration. The identification of metal complexes was determined as a function of thiourea concentration (between 10 µmol/L and 10 mmol/L) by the combination of UV-visible spectrometry, cyclic voltammetry, and for the first time capillary electrophoresis. The electrokinetic method was then applied for the quantitation of trace metal analyses in leach samples from waste printed circuit boards reprocessing, demonstrating its applicability for industrializable recycling applications. Graphical abstract.

6.
Analyst ; 144(1): 180-185, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30379147

RESUMO

S-nitrosothiols (RSNOs) are very important biomolecules that play crucial roles in many physiological and physiopathological processes. They act as NO-donors and are candidates for future medicines. Their identification and quantitation are therefore important for biomedical applications. One, two or more RSNOs can then be combined to design a drug and therefore, the quantification of each is important to establish an acceptable quality control process. Till date, miniaturized devices have been used to detect RSNOs based on their total quantitation without a preceding separation step. This study reports on an original and integrated microdevice allowing for the successive electrokinetic separation of low molecular weight RSNOs, their decomposition under metal catalysis, and their quantitation by amperometric detection of the produced nitrite in the end-channel arrangement, leading to their quantitation in a single run. For this purpose, a commercial SU-8/Pyrex microfluidic system was coupled to a portable and wireless potentiostat. Different operating and running parameters were optimized to achieve the best analytical data, allowing for an LOD equal to 20 µM. The simultaneous separation of S-nitrosoglutathione and S-nitrosocysteine was successfully obtained within 75 s. The proposed methodology using SU-8/Pyrex microfluidic devices opens new possibilities to investigate future drug candidates for NO-donors.


Assuntos
Cisteína/análogos & derivados , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , S-Nitrosoglutationa/análise , S-Nitrosotióis/análise , Catálise , Cobre/química , Cisteína/análise , Cisteína/síntese química , Cisteína/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas Analíticas Microfluídicas/instrumentação , S-Nitrosoglutationa/síntese química , S-Nitrosoglutationa/química , S-Nitrosotióis/síntese química , S-Nitrosotióis/química
7.
Electrophoresis ; 38(19): 2456-2461, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28370135

RESUMO

There is a great demand for integrating sample treatment into µTASs. In this context, we developed a new sol-gel phase for extraction of trace compounds in complex matrices. For this purpose, the incorporation of aptamers in silica-based gel within PDMS/glass microfluidic channels was performed for the first time by a one-step sol-gel process. The effective gel attachment onto microchannel walls and aptamer incorporation in the polymerized gel were evaluated using fluorescence microscopy. A good gel stability and aptamer incorporation inside the microchannel was demonstrated upon rinsing and over storage time. The ability of gel-encapsulated aptamers to interact with its specific target (either sulforhodamine B as model fluorescent target, or diclofenac, a pain killer drug) was assessed too. The binding capacity of entrapped aptamers was quantified (in the micromolar range) and the selectivity of the interaction was evidenced. Preservation of aptamers binding affinity to target molecules was therefore demonstrated. Dissociation constant of the aptamer-target complex and interaction selectivity were evaluated similar to those in bulk solution. This opens the way to new selective on-chip SPE techniques for sample pretreatment.


Assuntos
Aptâmeros de Nucleotídeos/análise , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Sílica Gel/química , Analgésicos/química , Anti-Inflamatórios não Esteroides/química , Cromatografia de Afinidade/métodos , Diclofenaco/química , Corantes Fluorescentes/química , Humanos , Microfluídica/instrumentação , Transição de Fase , Rodaminas/química , Sensibilidade e Especificidade , Poluentes Químicos da Água/química
8.
Anal Bioanal Chem ; 409(6): 1707-1715, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27928609

RESUMO

In this work, we characterized different phtalocyanine-capped core/shell/shell quantum dots (QDs) in terms of stability, ζ-potential, and size at various pH and ionic strengths, by means of capillary electrophoresis (CE), and compared these results to the ones obtained by laser Doppler electrophoresis (LDE) and dynamic light scattering (DLS). The effect of the phthalocyanine metallic center (Zn, Al, or In), the number (one or four), and nature of substituents (carboxyphenoxy- or sulfonated-) of functionalization on the phthalocyanine physicochemical properties were evaluated. Whereas QDs capped with zinc mono-carboxyphenoxy-phtalocyanine (ZnMCPPc-QDs) remained aggregated in the whole analyzed pH range, even at low ionic strength, QDs capped with zinc tetracarboxyphenoxy phtalocyanine (ZnTPPc-QDs) were easily dispersed in buffers at pH equal to or higher than 7.4. QDs capped with aluminum tetrasulfonated phthalocyanine (AlTSPPc-QDs) and indium tetracarboxyphenoxy phthalocyanines (InTCPPc-QDs) were stable in aqueous suspension only at pH higher than 9.0 due to the presence of functional groups bound to the metallic center of the phthalocyanine. The ζ-potential values determined by CE for all the samples decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiological relevant solutions and thereby, its usefulness for improving their design and applications for photodynamic therapy. Graphical Abstract Schematic illustration of the phthalocyanine capped QDs nanoconjugates and the capillary electrophoresis methods applied for size and ζ-potential characterization.


Assuntos
Indóis/química , Pontos Quânticos/química , Difusão Dinâmica da Luz/métodos , Eletroforese Capilar/métodos , Índio/química , Isoindóis , Lasers , Metais/química , Compostos Organometálicos/química , Concentração Osmolar , Tamanho da Partícula , Eletricidade Estática , Zinco/química
9.
Anal Biochem ; 502: 8-15, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26969790

RESUMO

The self-assembly of peptide nanotubes (PNTs) depends on the structure and chemistry of cyclic peptide (CP) monomers, having an impact on their properties, making the choice of their monomers and their characterization a great challenge. We synthesized for the first time a new set of eight original CP sequences of 8, 10, and 12 d,l-α-alternate amino acids with a controlled internal diameter from 7 to 13 Å. They present various properties (e.g., diameter, global surface charge, hydrophobicity) that can open the way to new applications. Their structure and purity were determined thanks to a capillary electrophoresis coupled to electrospray ionization mass spectrometry (CE-ESI-MS) methodology developed for the first time for this purpose. The CPs were successfully separated in a basic hydro-organic background electrolyte (BGE, pH 8.0, H2O/EtOH 50:50, v/v) and analyzed in MS positive mode. The effect of CP structure on electrophoretic mobility was studied, and the mass spectra were deeply analyzed. This methodology allowed verifying their purity and the absence of linear peptide precursors as well as their stability when stored over several months. Therefore, we have developed a new CE-ESI-MS methodology for the structure and purity control of interesting potential precursors for PNTs that could be employed as nanoplatforms in diagnostics or as pseudo sieving tools for separative purposes.


Assuntos
Aminoácidos/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Espectrometria de Massas por Ionização por Electrospray , Desenho de Fármacos , Eletroforese Capilar , Conformação Molecular
10.
Analyst ; 141(22): 6314-6320, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27722230

RESUMO

A disposable microfluidic paper-based analytical device (µPAD) was developed to easily analyse different S-nitrosothiols (RSNOs) through colorimetric measurements. RSNOs are carriers of nitric oxide (NO) that play several physiological and physiopathological roles. The quantification of RSNOs relies on their decomposition using several protocols and the colorimetric detection of the final product, NO or nitrite. µPADs were fabricated by wax printing technology in a geometry containing one central zone for the sample inlet and eight circular detection zones interconnected by microfluidic channels for decomposition and posterior detection of decayed products. Different decomposition protocols including mercuric ions and light (UV, visible, and infrared) were tested on µPADs. For this purpose, a 3D printed holder was coupled with µPADs to easily design a simultaneous decomposition procedure using different light sources. The Griess reagent was added to detect NO and nitrite produced by the different decomposition methods. µPADs were then scanned using a flat board scanner and calibration curves based on color intensity were plotted. The limit of detection (LOD) values achieved for nitrite (used as a reference compound) and S-nitrosoglutathione (GSNO) using mercuric decomposition were 3 and 4 µM, respectively. The LOD reported herein for nitrite is considered among the lowest LODs already reported for this compound using µPADs. The results also show that low-molecular-weight RSNO, namely S-nitrosocysteine, decomposes more easily than high-molecular-weight RSNOs with light. As a proof of concept, RSNOs in human plasma were successfully detected on µPADs. For this purpose, a preliminary treatment step was optimized and the presence of high-molecular-weight (HMW) RSNOs was evidenced in the available plasma samples. The concentrations of HMW-RSNOs and nitrite in the various samples ranged from 5 to 16 µM and from 37 to 58 µM, respectively.

11.
Anal Bioanal Chem ; 408(11): 2669-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26800982

RESUMO

This paper gives a critical overview of capillary electrophoresis (CE) methodologies recently developed for controlling and optimizing the synthesis of nanoparticles as well as characterizing their functionalization in terms of physicochemical properties. Thanks to their electrophoretic mobility, various parameters can be determined, such as NP size and charge distribution, ζ-potential, surface functionality, colloidal stability, grafting rates, and dissociation constants, allowing not only the complete characterization of new nanoprobes but also helping in their design and in the selection of chemical conditions for their storage and further manipulation. New strategies for the improvement of CE detection sensitivity are also described.


Assuntos
Eletroforese Capilar/métodos , Nanopartículas
12.
Electrophoresis ; 36(16): 1982-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25999258

RESUMO

S-Nitrosothiols (RSNO) are composed of a NO group bound to the sulfhydryl group of a peptide or protein. RSNO are very important biological molecules, since they have many effects on human health. RSNO are easily naturally decomposed by metal ions, light, and heat, with different kinetics. They can furthermore undergo transnitrosation (NO moieties exchange), which is a crucial point in physiological conditions since the concentration ratios between the different nitrosothiols is a key factor in many physiopathological processes. There is therefore a great need for their quantitation. Many S-nitrosothiol detection and quantitation methods need their previous decomposition, leading thus to some limitations. We propose a direct quantitation method employing the coupling of capillary electrophoresis with a homemade capacitively coupled contactless conductivity (C(4) D) detector in order to separate and quantify S-nitrosoglutathione and its decomposition products. After optimization of the method, we have studied the kinetics of decomposition using light and heat. Our results show that the decomposition by light is first order (kobs   =  (3.40 ± 0.15) × 10(-3)  s(-1) ) while that using heat (at 80°C) is zeroth order (kobs,80°C   =  (4.34 ± 0.14) × 10(-6)  mol L(-1) s(-1) ). Transnitrosation reaction between S-nitrosoglutathione and cysteine was also studied, showing the possibility of separation and detection of all the products of this reaction in less than 2.5 min.


Assuntos
Eletroforese Capilar/métodos , S-Nitrosoglutationa/análise , S-Nitrosoglutationa/química , Cisteína/química , Condutividade Elétrica , Luz , Limite de Detecção , Modelos Lineares , Óxido Nítrico/química , S-Nitrosoglutationa/efeitos da radiação , Temperatura
13.
Anal Bioanal Chem ; 407(20): 6221-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26044739

RESUMO

S-Nitrosoglutathione (GSNO) is a very important biomolecule that has crucial functions in many physiological and physiopathological processes. GSNO acts as NO donor and is a candidate for future medicines. This work describes, for the first time, the separation and the detection of GSNO and its decomposition products using capillary electrophoresis coupled to mass spectrometry (CE-MS). The separation was performed in slightly alkaline medium (pH 8.5) under positive-ionization MS detection. The identification of three byproducts of GSNO was formally performed for the first time: oxidized glutathione (GSSG), glutathione sulfinic acid (GSO2H), and glutathione sulfonic acid (GSO3H). GSO2H and GSO3H are known to have important biological activity, including inhibition of the glutathione transferase family of enzymes which are responsible for the elimination of many mutagenic, carcinogenic, and pharmacologically active molecules. We observed, after the ageing of GSNO in the solid state, that the proportion of both GSSG and GSO3H increases whereas that of GSO2H decreases. These results enabled us to propose an oxidation scheme explaining the formation of such products.


Assuntos
Eletroforese Capilar , Dissulfeto de Glutationa/análise , Espectrometria de Massas , S-Nitrosoglutationa/análise , Ácidos Sulfínicos/análise , Ácidos Sulfônicos/análise , Eletroforese Capilar/métodos , Dissulfeto de Glutationa/isolamento & purificação , Espectrometria de Massas/métodos , Oxirredução , S-Nitrosoglutationa/isolamento & purificação , Ácidos Sulfínicos/isolamento & purificação , Ácidos Sulfônicos/isolamento & purificação
14.
Anal Bioanal Chem ; 406(4): 1089-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23925800

RESUMO

With the view of designing new nanoparticle (NP)-aptamer conjugates and proving their suitability as biorecognition tools for miniaturized molecular diagnostics, new maghemite-silica core-shell NP-aptamer conjugates were characterized for the first time in terms of grafting rate and colloidal stability under electrophoretic conditions using capillary electrophoresis. After the grafting rate (on the order of six to 50) of the lysozyme-binding aptamer had been estimated, the electrophoretic stability and peak dispersion of the resulting oligonucleotide-NP conjugates were estimated so as to determine the optimal separation conditions in terms of buffer pH, ionic strength and nature, as well as temperature and electric field strength. The effective surface charge density of the NPs was close to zero for pH lower than 5, which led to some aggregation. The NPs were stable in the pH range from 5 to 9, and an increase in electrophoretic mobility was evidenced with increasing pH. Colloidal stability was preserved at physiological pH for both non-grafted NPs and grafted NPs in the 10-100 mM ionic strength range and in the 15-60 °C temperature range. A strong influence of the nature of the buffer counterion on NP electrophoretic mobility and peak dispersion was evidenced, thus indicating some interactions between buffer components and NP-aptamer conjugates. Whereas an electric field effect (50-900 V cm(-1)) on NP electrophoretic mobility was evidenced, probably linked to counterion dissociation, temperature seems to have an appreciable effect on the zeta potential and aptamer configuration as well. This information is crucial for estimating the potentialities of such biorecognition tools in electrophoretic systems.


Assuntos
Aptâmeros de Nucleotídeos/química , Nanopartículas de Magnetita/química , Eletroforese Capilar , Concentração de Íons de Hidrogênio , Muramidase/química , Concentração Osmolar , Tamanho da Partícula
15.
J Chromatogr A ; 1713: 464496, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37976903

RESUMO

Nanostructures formed by the self-assembling peptide building blocks are attractive materials for the design of theranostic objects due to their intrinsic biocompatibility, accessible surface chemistry as well as cavitary morphology. Short peptide synthesis and modification are straightforward and give access to a great diversity of sequences, making them very versatile building blocks allowing for the design of thoroughly controlled self-assembled nanostructures. In this work, we developed a new CE-DAD-ESI-MS method to characterize short synthetic amphiphilic peptides in terms of exact sequence and purity level in the low 0.1 mg.mL-1 range, without sample treatment. This study was conducted using a model sequence, described to have pH sensitive self-assembling property. Peptide samples obtained from different synthesis processes (batch or flow, purified or not) were thus separated by capillary zone electrophoresis (CZE). The associated dual UV and MS detection mode allowed to evidence the exact sequence together with the presence of impurities, identified as truncated or non-deprotected sequences, and to quantify their relative proportion in the peptide mixture. Our results demonstrate that the developed CE-DAD-ESI-MS method could be directly applied to the characterization of crude synthetic peptide products, in parallel with the optimization of peptide synthetic pathway to obtain controlled sequences with high synthetic yield and purity, which is crucial for further design of robust peptide based self-assembled nanoarchitectures.


Assuntos
Nanoestruturas , Nanomedicina Teranóstica , Eletroforese Capilar , Espectrometria de Massas , Peptídeos , Espectrometria de Massas por Ionização por Electrospray
16.
Anal Biochem ; 435(2): 150-2, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333271

RESUMO

Aptamer-conjugated nanoparticles (Apt-NPs) are increasingly being developed for biomedical purposes and especially for diagnosis and therapy. However, there is no quantitative study of the targeting functionality of such grafted aptamers compared with free aptamers. Thus, we report the first determination of binding parameters for Apt-NP/target complexes, thanks to a continuous frontal analysis in a microchip electrophoresis format (named FACMCE), based on a methodology previously developed by our group. As a model system, the targeting ability of a lysozyme-binding aptamer conjugated to fluorescent maghemite nanoparticles was evaluated and showed evidence that the conjugation does not alter the affinity of this aptamer.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletroforese em Microchip , Nanopartículas Metálicas/química , Sequência de Bases , Sítios de Ligação , Compostos Férricos/química
17.
Electrophoresis ; 30(14): 2572-82, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19593752

RESUMO

In view of employing functionalized nanoparticles (NPs) in the context of an immunodiagnostic, aminated maghemite/silica core/shell particles were synthesized so as to be further coated with an antibody or an antigen via the amino groups at their surface. Different functionalization rates were obtained by coating these maghemite/silica core/shell particles with 3-(aminopropyl)triethoxysilane and 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane at different molar ratios. Adequate analytical performances with CE coupled with UV-visible detection were obtained through semi-permanent capillary coating with didodecyldimethyl-ammonium bromide, thus preventing particle adsorption. First, the influence of experimental conditions such as electric field strength, injected particle amount as well as electrolyte ionic strength and pH, was evaluated. A charge-dependent electrophoretic mobility was evidenced and the separation selectivity was tuned according to electrolyte ionic strength and pH. The best resolutions were obtained at pH 8.0, high ionic strength (ca. 100 mM), and low total particle volume fraction (ca. 0.055%), thus eliminating interference effects between different particle populations in mixtures. A protocol derived from Kaiser's original description was performed for quantitation of the primary amino groups attached onto the NP surface. Thereafter a correlation between particle electrophoretic mobility and the density of amino groups at their surface was established. Eventually, CE proved to be an easy, fast, and reliable method for the determination of NP effective surface charge density.


Assuntos
Eletroforese Capilar/métodos , Compostos Férricos/química , Nanopartículas/química , Dióxido de Silício/química , Aminoácidos/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Tamanho da Partícula , Propilaminas/química , Silanos/química , Trometamina/química
18.
Methods Mol Biol ; 1855: 315-326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30426428

RESUMO

The self-assembly of peptide nanotubes (PNTs) depends on the structure and chemistry of cyclic peptide (CP) monomers, impacting on their properties, which makes the choice of their monomers and their characterization a high challenge. For this purpose, we developed for the first time a capillary electrophoresis coupled to electrospray ionization mass spectrometry (CE-ESI-MS) methodology and characterized a set of eight original CP sequences of 8, 10, and 12 D,L-α-alternate amino acids with a controlled internal diameter (from 7 to 13 Å) and various properties (diameter, global surface charge, hydrophobicity). This new CE-ESI-MS methodology allows verifying the structure, the purity, as well as the stability (when stored during several months) of interesting potential precursors for PNTs that could be employed as nanoplatforms in diagnostics or pseudo sieving tools for separation purposes.


Assuntos
Aminoácidos/química , Eletroforese Capilar/métodos , Nanotubos/química , Peptídeos Cíclicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Eletricidade Estática
19.
Methods Mol Biol ; 2000: 373-385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148026

RESUMO

Capillary zone electrophoresis (CZE) complemented with Taylor Dispersion Analysis-CE (TDA-CE) was developed to physicochemically characterize phthalocyanine-capped core/shell/shell quantum dots (QDs) at various pH and ionic strengths. An LED-induced fluorescence detector was used to specifically detect the QDs. The electropherograms and taylorgrams allowed calculating the phthalocyanine-QDs (Pc-QDs) ζ-potential and size, respectively, and determining the experimental conditions for colloidal stability. This methodology allowed evidencing either a colloidal stability or an aggregation state according to the background electrolytes nature. The calculated ζ-potential values of Pc-QDs decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. For the same reason, the hydrodynamic diameter of Pc-QDs increased with increasing background electrolyte ionic strength. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiologically relevant solutions and, thereby, its usefulness for improving their design and applications for photodynamic therapy.


Assuntos
Eletroforese Capilar , Indóis , Pontos Quânticos/química , Fluorescência , Concentração de Íons de Hidrogênio , Isoindóis , Concentração Osmolar , Fármacos Fotossensibilizantes
20.
J Chromatogr A ; 1204(2): 226-32, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18718601

RESUMO

The collective diffusion coefficient D(C) of diluted suspensions of positively charged iron oxide maghemite particles was experimentally investigated using a capillary electrophoresis instrument on the grounds of Taylor dispersion theory. Conditions for this approach to be applicable to nanoparticles of mean solid diameter below 10nm were set in this work, enabling precisions on D(C) determination of less than 2% relative standard deviation (RSD). Significantly different D(C) values were thus measured for particle populations differing in solid number mean diameter by only 2 nm. The obtained values were compared to the z-average diffusion coefficient derived from dynamic light scattering (DLS) experiments and used for the calculation of the Stokes radius. The measured diffusion coefficients appeared to be dependent on particle volume fraction and electrolyte ionic strength. These observations were eventually discussed in terms of particle interactions.


Assuntos
Eletroforese Capilar/instrumentação , Nanopartículas Metálicas/química , Difusão , Eletrólitos/química , Compostos Férricos/química , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa