Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 123: 104596, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038898

RESUMO

This study evaluated the use of acerola (Malpighia glabra L., CACE), cashew (Anacardium occidentale L., CCAS), and guava (Psidium guayaba L., CGUA) fruit processing coproducts as substrates to promote the growth, metabolite production, and maintenance of the viability/metabolic activity of the probiotics Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10 during cultivation, freeze-drying, storage, and exposure to simulated gastrointestinal digestion. Probiotic lactobacilli presented high viable counts (≥8.8 log colony-forming units (CFU)/mL) and a short lag phase during 24 h of cultivation in CACE, CCAS, and CGUA. Cultivation of probiotic lactobacilli in fruit coproducts promoted sugar consumption, medium acidification, and production of organic acids over time, besides increasing the of several phenolic compounds and antioxidant activity. Probiotic lactobacilli cultivated in fruit coproducts had increased survival percentages after freeze-drying and during 120 days of refrigerated storage. Moreover, probiotic lactobacilli cultivated and freeze-dried in fruit coproducts had larger subpopulations of live and metabolically active cells when exposed to simulated gastrointestinal digestion. The results showed that fruit coproducts not only improved the growth and helped to maintain the viability and metabolic activity of probiotic strains but also enriched the final fermented products with bioactive compounds, being an innovative circular strategy for producing high-quality probiotic cultures.


Assuntos
Frutas , Probióticos , Probióticos/metabolismo , Frutas/microbiologia , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/fisiologia , Anacardium/microbiologia , Anacardium/crescimento & desenvolvimento , Psidium/crescimento & desenvolvimento , Psidium/microbiologia , Malpighiaceae/crescimento & desenvolvimento , Malpighiaceae/microbiologia , Liofilização , Viabilidade Microbiana , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/fisiologia , Fermentação , Manipulação de Alimentos/métodos
2.
Clin Nutr ESPEN ; 61: 158-167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777429

RESUMO

BACKGROUND: Diabetic retinopathy (DR) and limb amputation are frequent complications of diabetes that cannot always be explained by blood glucose control. Metabolomics is a science that is currently being explored in the search for biomarkers or profiles that identify clinical conditions of interest. OBJECTIVE: This study aimed to analyze, using a metabolomic approach, peripheral blood samples from type 2 diabetes mellitus (DM2) individuals, compared with those with diabetic retinopathy and limb amputation. METHODS: The sample consisted of 128 participants, divided into groups: control, DM2 without DR (DM2), non-proliferative DR (DRNP), proliferative DR (DRP), and DM2 amputated (AMP). Metabolites from blood plasma were classified by spectra using nuclear magnetic resonance (NMR), and the metabolic routes of each group using metaboanalyst. RESULTS: We identified that the metabolism of phenylalanine, tyrosine, and tryptophan was discriminant for the DRP group. Histidine biosynthesis, on the other hand, was statistically associated with the AMP group. The results of this work consolidate metabolites such as glutamine and citrulline as discriminating for DRP, and the branched-chain amino acids as important for DR. CONCLUSIONS: The results demonstrate the relationship between the metabolism of ketone bodies, with acetoacetate metabolite being discriminating for the DRP group and histidine being a significant metabolite in the AMP group, when compared to the DM2 group.


Assuntos
Amputação Cirúrgica , Biomarcadores , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Metabolômica , Humanos , Diabetes Mellitus Tipo 2/sangue , Retinopatia Diabética/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue , Espectroscopia de Ressonância Magnética
3.
Artigo em Inglês | MEDLINE | ID: mdl-37561381

RESUMO

This study evaluated the impacts of novel nutraceuticals formulated with freeze-dried jabuticaba peel (FJP) and three potentially probiotic Limosilactobacillus fermentum strains on the abundance of bacterial groups forming the human intestinal microbiota, metabolite production, and antioxidant capacity during in vitro colonic fermentation. The nutraceuticals had high viable counts of L. fermentum after freeze-drying (≥ 9.57 ± 0.09 log CFU/g). The nutraceuticals increased the abundance of Lactobacillus ssp./Enterococcus spp. (2.46-3.94%), Bifidobacterium spp. (2.28-3.02%), and Ruminococcus albus/R. flavefaciens (0.63-4.03%), while decreasing the abundance of Bacteroides spp./Prevotella spp. (3.91-2.02%), Clostridium histolyticum (1.69-0.40%), and Eubacterium rectale/C. coccoides (3.32-1.08%), which were linked to positive prebiotic indices (> 1.75). The nutraceuticals reduced the pH and increased the sugar consumption, short-chain fatty acid production, phenolic acid content, and antioxidant capacity, besides altering the metabolic profile during colonic fermentation. The combination of FJP and probiotic L. fermentum is a promising strategy to produce nutraceuticals targeting intestinal microbiota.

4.
Food Res Int ; 174(Pt 2): 113658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981375

RESUMO

This study investigated the potential impacts of the flour from Cereus jamacaru cactus cladodes (CJF), a cactus native to the Brazilian Caatinga biome, on the growth and metabolism of different potentially probiotic strains, as well as on the abundance of selected intestinal bacterial populations and microbial metabolic activity during in vitro colonic fermentation with a pooled human fecal inoculum. Cultivation of the probiotics in a medium with C. jamacaru cladodes flour (20 g/L) resulted in viable cell counts of up to 9.8 log CFU/mL, positive prebiotic activity scores (0.73-0.91), decreased pH and sugar contents, and increased lactic, acetic, and propionic acid production over time, indicating enhanced probiotic growth and metabolic activity. CJF overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (2.12-3.29%) and Bifidobacterium spp. (4.08-4.32%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.35-6.81%), Clostridium histolyticum (6.91-3.59%), and Eubacterium rectale/Clostridium coccoides (7.70-3.95%) during 48 h of an in vitro colonic fermentation using a pooled human fecal inoculum. CJF stimulated the microbial metabolic activity, with decreased pH, sugar consumption, lactic and short-chain fatty acid production, alterations in overall metabolic profiling and phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. These results show that CJF stimulated the growth and metabolic activity of distinct potential probiotics, increased the relative abundance of beneficial intestinal bacterial groups, and stimulated microbial metabolism during in vitro colonic fermentation. Further studies using advanced molecular technologies and in vivo experimental models could forward the investigation of the potential prebiotic properties of CJF.


Assuntos
Cactaceae , Microbioma Gastrointestinal , Humanos , Farinha , Fermentação , Metabolômica
5.
Nat Prod Res ; 33(22): 3231-3239, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29733689

RESUMO

One new diterpene (4R,7R,14S)-4α,7α-diacetoxy-10-one-14α-hydroxydolasta-1(15),8-diene (1), and five known compounds (4R,7R,14S)-4α,7α-diacetoxy-14α-hydroxydolasta-1(15),8-diene (2), (4R,14S)-4α,14α-dihydroxydolasta-1(15),8-diene (3), (4S,9R,14S)-4α-acetoxy-9ß,14α-dihydroxydolasta-1(15),7-diene (4), 4-acetoxy-14-hydroxydolasta-1(15),7,9-triene (5) and isolinearol (6), were isolated from Canistrocarpus cervicornis. In this study, dolastane diterpenes were isolated from the alga C. cervicornis and evaluated as modifiers of antibiotic activity in Staphylococcus aureus: SA-1199B, which overexpresses the norA gene RN-4220, which encodes for the protein efflux of macrolides (MRSA), and IS-58 which has the gene encoding the protein TetK. The minimum inhibitory concentrations (MICs) for norfloxacin, tetracycline and erythromycin were determined by the microdilution broth nutrient in the absence and presence of diterpenes at a sub-inhibitory concentration (MIC/4). The extracts of C. cervicornis and isolated diterpenes showed no antibacterial activity, but showed modulatory activity, decreasing the MIC of antibiotics by 4-256 fold. The results indicate that seaweed extracts and diterpenes are potential sources of antibiotic adjuvant, acting as potential inhibitors of efflux pump.


Assuntos
Diterpenos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Phaeophyceae/química , Antibacterianos/química , Antibacterianos/farmacologia , Diterpenos/isolamento & purificação , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa