Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Nanosci Nanotechnol ; 14(8): 6355-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25936118

RESUMO

Polysulfone membranes (PSF) were modified with silver nanoparticles obtained by new synthesis (nAgNS), silver nanoparticles obtained commercially (nAgC), silver sulfadiazine (SP), dodecyltrimethylammonium bromide (DOTAB), benzalkonium chloride (CB) or sodium dodecylbenzene sulfonate (DBSS) to improve the efficiency of the water filtration process by reducing biofouling. All membranes had lower hydrophobicity compared with PSF. The zeta potentials of all membranes were negative at pH 7.0, except for CB 10%. In the agar diffusion test, E. coli was considered to be sensitive to the antimicrobial effect of the nAgNS 1%, 3%, 6%, 10% and DOTAB 10%, whereas S. aureus was sensitive to the nAgNS 1%, 3%, 6%, 10%, DOTAB 10%, CB 0.22%, 2% and 10%. The lowest adhesion of E. coli was found in the nAgNS 6% and 10%. In the evaluation of the loss of flow rate during filtration of the E. coli suspension and pure water, nAgNS showed higher flow rate values when compared with PSF. The nAgNS did not release quantities of silver (0.1 mg/l) above the amount considered safe by the World Health Organization. Membranes nAgNS 6% and 10% showed the best anti-biofouling characteristic.


Assuntos
Membranas Artificiais , Polímeros/química , Sulfonas/química , Purificação da Água/instrumentação , Escherichia coli/isolamento & purificação , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Staphylococcus aureus/isolamento & purificação
2.
Food Chem ; 384: 132485, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219985

RESUMO

The thermodynamics and kinetics of arachin-Congo red (ARA-CR) and conarachin-Congo red (CON-CR) interactions were studied using surface plasmon resonance. KCl led to a reduction of up to 55% in the values of the associated kinetic constants, but it had less influence on the dissociation rates (less than 12%). The change in ionic strength had little effect on the thermodynamic stability of the complexes, but it did reduce their affinities ( [Formula: see text] from 3.52 to 2.44 × 103 M-1 and [Formula: see text] from 15.1 to 12.5 × 103 M-1). The shielding of the electrical double layer favored ARA-CR hydrophilic interactions ( [Formula: see text] decreased from -30.60 to -42.98 kJ mol-1). On the other hand, hydrophobic interactions came to dominate during the formation of [CON-CR]0 ( [Formula: see text] increased from -11.21 to 28.34 kJ mol-1 and [Formula: see text] increased from 12.64 to 51.73 kJ.mol-1). The data presented here improve our understanding of plant-based protein nanocarriers of small bioactive molecules.


Assuntos
Vermelho Congo , Sondas Moleculares , Vermelho Congo/química , Cinética , Proteínas de Plantas , Termodinâmica
3.
Environ Sci Pollut Res Int ; 29(18): 26425-26448, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34859352

RESUMO

A new one-pot synthesis method optimized by a 23 experimental design was developed to prepare a biosorbent, sugarcane bagasse cellulose succinate pyromellitate (SBSPy), for the removal of Cu(II) and Zn(II) from single-component aqueous solutions, in batch and continuous modes. The bi-functionalization of the biosorbent with ligands of different chemical structures increased its selectivity, improving its performance for removing pollutants from contaminated water. The succinate moiety favored Cu(II) adsorption, while the pyromellitate moiety favored Zn(II) adsorption. Sugarcane bagasse (SB) and SBSPy were characterized using several techniques. Analysis by 13C Multi-CP SS NMR and FTIR revealed the best order of addition of each anhydride that maximized the chemical modification of SB. The maximum adsorption capacities of SBSPy for Cu(II) and Zn(II), in batch mode, were 1.19 and 0.95 mmol g-1, respectively. Homogeneous surface diffusion, intraparticle diffusion, and Boyd models were used to determine the steps involved in the adsorption process. Isothermal titration calorimetry was used to assess changes in enthalpy of adsorption as a function of SBSPy surface coverage. Fixed-bed column adsorption of Cu(II) and Zn(II) was performed in three cycles, showing that SBSPy has potential to be used in water treatment. Breakthrough curves were well fitted by the Thomas and Bohart-Adams models.


Assuntos
Saccharum , Poluentes Químicos da Água , Purificação da Água , Adsorção , Celulose/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Saccharum/química , Ácido Succínico , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Zinco/análise
4.
Food Res Int ; 158: 111567, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840255

RESUMO

Despite some thermodynamics studies about ß-lactoglobulin (ßLG) and resveratrol (RES) interactions, there is a gap regarding kinetics data about ßLG-RES complex formation. Here, we determined the kinetic and thermodynamic parameters of ßLG-RES interactions by using surface plasmon resonance (SPR). The kinetic association parameters were dependent on the 3D water structure present on the solvation shell of both interacting molecules. At lower temperature (285.15 K), all activation energies were positive (Eacta‡= 82.86 kJ.mol-1,TΔSa‡= 32.26 kJ.mol-1, and ΔCpa‡= 4.15 kJ.mol-1K-1) due to the higher water structuration on the RES and ßLG solvation shell. All these energetic barriers become mainly from the energetic cost for the desolvation process of RES and ßLG. At higher temperature (301.15 K), the solvation water structure decreases and all the above activation energies become negative (Eacta‡=-121.58 kJ.mol-1,TΔSa‡=-173.59 kJ.mol-1, and ΔCpa‡=-29.92 kJ.mol-1K-1) because the direct interaction between desolvated RES and ßLG molecules released more energy than it is absorbed by desolvation process. However, kinetic dissociation parameters were not dependent on the hydrogen bond density of the water solvation shell as showed by the temperature independence of dissociation energetic parameters. This non-dependence of the dissociation process from the desolvation step probably is because the water molecules interacting with the ßLG-RES complex is not concentrated around/inside the protein site of interaction. The association of free molecules was 1.5 times faster than the dissociation of the thermodynamically stable complex (ΔG(a)‡â€¯â‰… 48.15 kJ.mol-1, ΔG(d)‡â€¯â‰… 73.10 kJ.mol-1). The lower free energy barrier observed for the association came from an isokinetic process where entropic and enthalpic parameters compensated for each other. The ΔG° values indicate that the thermodynamically stable complex predominates over free molecules. At low temperature (285.15 K), the hydrophobic interaction (ΔH° = 73.06 kJ.mol-1; TΔS° = 99.60 kJ.mol-1) drove the ßLG-RES complex formation while at high temperature (301.15 K), hydrophilic interactions became dominant (ΔH° = -142.50 kJ.mol-1; TΔS° = -118.18 kJ.mol-1).


Assuntos
Lactoglobulinas , Água , Cinética , Resveratrol , Termodinâmica
5.
Int J Biol Macromol ; 184: 990-999, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197852

RESUMO

To explore in vivo application of quantum dots (QDs), it is essential to understand the dynamics and energetics of interactions between QDs and proteins. Here, surface plasmon resonance (SPR) and molecular docking were employed to investigate the kinetics and thermodynamics of interactions between human serum albumin (HSA) and CdTe QDs (~3 nm) functionalized with mercaptopropionic acid (MPA) or thioglycolic acid (TGA). Kinetic analysis showed that HSA-QD interactions involved transition-complex formation. Despite the structural similarities between MPA and TGA, the [HSA-CdTe@TGA]‡ formation by association of free HSA and QDs demanded 70% more energy and higher entropic gain (Ea-TGA‡= 65.10 and T∆Sa-TGA‡= 28.62 kJ mol-1) than the formation of [HSA-CdTe@MPA]‡ (Ea-MPA‡ = 38.13 and T∆Sa-MPA‡ = 0.53kJ mol-1). While the [HSA-CdTe@MPA]° dissociation required higher energy and lower entropy loss (Ed-MPA‡ = 49.96 and T∆Sd-MPA‡ = - 32.18kJ mol-1) than the [HSA-CdTe@TGA]° dissociation (Ed-TGA‡= 30.78 and T∆Sd-TGA‡= - 51.12 kJ mol-1). The stability of [HSA-QDs]° was independent of the temperature and functionalizing group. However, the enthalpic and entropic components were highly affected by the substitution of MPA (ΔH° = - 11.83 and TΔS° = 32.72 kJ mol-1) with TGA (ΔH° = 34.31 and TΔS° = 79.73 kJ mol-1). Furthermore, molecular docking results indicated that the metal site on the QDs contributes to the stabilization of [HSA-QDs]°. Therefore, differences in QD functionalization and surface coverage densities can alter the HSA-QD interaction, thus their application.


Assuntos
Compostos de Cádmio/farmacologia , Albumina Sérica Humana/metabolismo , Compostos de Sulfidrila/química , Telúrio/farmacologia , Tioglicolatos/química , Compostos de Cádmio/química , Entropia , Humanos , Cinética , Simulação de Acoplamento Molecular , Pontos Quânticos , Albumina Sérica Humana/química , Ressonância de Plasmônio de Superfície , Telúrio/química , Termodinâmica
6.
Food Chem ; 307: 125514, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639576

RESUMO

The thermodynamics and kinetics of binding between human serum albumin (HSA) and resveratrol (RES) or its analog (RESAn1) were investigated by surface plasmon resonance (SPR). The binding constant and the kinetic constants of association and dissociation indicated that RESAn1 has higher affinity toward HSA than does RES. The formation of these complexes was entropically driven ( [Formula: see text] , [Formula: see text]  KJ mol-1). However, for both polyphenols, the activation energy (Eact) of association (a) of free molecules was higher than that for dissociation (d) of the stable complex ( [Formula: see text]  KJ mol-1), and the rate of association was faster than that of dissociation since the activation Gibbs free energy (ΔG‡) was lower for the former (ΔGaHSA-RES‡â‰…54.73,ΔGdHSA-RES‡â‰…73.83,ΔGaHSA-RESAn1‡â‰…54.14,ΔGdHSA-RESAn1‡â‰…73.97 KJ mol-1). This study showed that small differences in the structure of polyphenols such as RES and RESAn1 influenced the thermodynamics and kinetics of the complex formation with HSA.


Assuntos
Fenóis/química , Resveratrol/metabolismo , Albumina Sérica Humana/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Cinética , Ligação Proteica , Resveratrol/química , Albumina Sérica Humana/química , Ressonância de Plasmônio de Superfície , Temperatura , Termodinâmica
7.
J Colloid Interface Sci ; 576: 158-175, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416548

RESUMO

A bioadsorbent (CEDA) capable of adsorbing As(V) and Cu(II) simultaneously was prepared by tosylation of microcrystalline cellulose (MC) and nucleophilic substitution of the tosyl group by ethylenediamine. MC, tosyl cellulose, and CEDA were characterized by elemental C, H, N, and S analysis, infrared spectroscopy, and 13C solid-state nuclear magnetic resonance spectroscopy. The adsorption of As(V) and Cu(II) on CEDA was evaluated as a function of solution pH, contact time, and initial solute concentration. The maximum adsorption capacities of CEDA for As(V) and Cu(II) were 1.62 and 1.09 mmol g-1, respectively. The interactions of As(V) and Cu(II) with CEDA were elucidated using thermodynamic parameters, molecular quantum mechanics calculations, and experiments with ion exchange of Cd(II) by Cu(II), and As(V) by SO42-. Adsorption enthalpies were determined as a function of surface coverage of the CEDA, using isothermal titration calorimetry, with ΔadsH° values of -32.24 ± 0.07 and -93 ± 2 kJ mol-1 obtained for As(V) and Cu(II), respectively. The potential to reuse CEDA was evaluated and the interference of other ions in the adsorption of As(V) and Cu(II) was investigated. Multi-component experiments showed that Cd(II), Co(II), Ni(II), and Pb(II) did not interfere in the adsorption of Cu(II), while SO42- inhibited As(V) adsorption.


Assuntos
Poluentes Químicos da Água , Adsorção , Celulose , Cobre , Concentração de Íons de Hidrogênio , Cinética , Soluções , Água
8.
Braz J Microbiol ; 40(4): 1002-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031453

RESUMO

There is an increasing tendency to add natural antimicrobials of plant origin into food. The objective of this work was to develop a microbial sachet incorporated with allyl isothiocyanate (AIT), a volatile compound of plant origin, and to test its efficiency against growth of yeasts and molds, Staphylococcus sp. and psychrotrophic bacteria on sliced mozzarella cheese. Another objective was to quantify the concentration of AIT in the headspace of cheese packaging. A reduction of 3.6 log cycles was observed in yeasts and molds counts in the mozzarella packed with the antimicrobial sachet over 15-day storage time. The sachet also showed an antibacterial effect on Staphylococcus sp., reducing 2.4 log cycles after 12-day storage. Psychrotrophic bacteria species were the most resistant to the antimicrobial action. The highest concentration of AIT (0.08µg.mL(-1)) inside the active packaging system was observed at the 6(-)day of storage at 12 ºC ± 2 ºC. At the end of the storage time, AIT concentration decreased to only 10% of the initial concentration. Active packaging containing antimicrobial sachet has a potential use for sliced mozzarella, with molds and yeasts being the most sensitive to the antimicrobial effects.

9.
Int J Biol Macromol ; 133: 860-866, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31028811

RESUMO

Determine the thermodynamic and kinetic parameters of interaction between micellar casein (MC) and curcumin (CUR) is useful for the application of MC-CUR systems in food products. We used surface plasmon resonance (SPR) and ultraviolet-visible spectrophotometry (UV-vis) to study the complex formation between MC obtained from skimmed milk and CUR, MC carrying capacity, and thermal protection for CUR at a pH of 6.6. An MC could carry about 18,000 molecules of CUR. SPR suggested an enthalpy-driven process (∆H°â€¯= -64.63 kJ∙mol-1 and T∆S° ranging from -42.45 to -44.46 kJ∙mol-1). Temperature increased reduced the rate of MC-CUR complex formation and increased its dissociation rate. The activation energy for the formation of MC-CUR activated complexes was negative for association of free MC and CUR molecules (-62.8 kJ mol-1) and positive for dissociation of the thermodynamically stable complexes (1.80 kJ mol-1). MC protected the CUR against its thermal degradation when it was subjected to different temperatures (30, 40, 50, and 60 °C for 5.5 h). This study shows the importance of characterizing MC-small molecules interactions for better application of MC as a nanocarrier.


Assuntos
Caseínas/metabolismo , Curcumina/química , Curcumina/metabolismo , Micelas , Ressonância de Plasmônio de Superfície , Cinética , Ligação Proteica , Temperatura
10.
Food Chem ; 280: 1-7, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642473

RESUMO

Colorimetric nanosensors formed of polydiacetylene (PDA), triblock copolymer (L64 or F68), and sodium dodecyl sulfate (SDS), so-called nanoblends, were developed to detect enrofloxacin (ENRO) in aqueous media. The nanosensors show hydrodynamic diameter ranging from 234.2 ±â€¯3.5 to 801.6 ±â€¯17.8 nm for SDS concentrations of 13.0-21.0 mM, respectively. The lowest limit of detection was 0.054 µM, which is five times smaller than the maximum limit allowed by the European Union. The response surfaces showed that both the SDS and ENRO concentrations influenced the colorimetric response (p < 0.05), and kinetic rate of colorimetric transition (RCT). SDS concentration between 11.0 and 14.0 mM in the nanoblend yielded the most sensitive nanosensors for detecting ENRO. When L64 was replaced by F68, the colorimetric response of the nanoblends was similar, but PDA/F68/SDS showed a slower RCT than PDA/L64/SDS. The developed nanosensor is a sensitive and simple device for the fast detection of ENRO.


Assuntos
Colorimetria , Enrofloxacina/análise , Polímero Poliacetilênico/química , Polímeros/química , Tensoativos/química , Antibacterianos/análise , Limite de Detecção , Dodecilsulfato de Sódio/química
11.
Colloids Surf B Biointerfaces ; 181: 798-805, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247404

RESUMO

Characterizing the energetics and molecular dynamics of binding between proteins and bioactive compounds is strategic. Using surface plasmon resonance, we demonstrated that ß-casein (ß-cas) and quercetin (Qct) form supramolecular complexes driven by an increase in entropy (ΔH°â€¯= 25.86 and TΔS° =53.49 kJ∙mol-1 at 25 °C). It was possible to infer that the ß-cas/Qct complex was formed via an activated complex synthesized by an entropic reduction (TΔS‡(a)= -15.31 kJ mol-1 and TΔS‡(d)= -68.80 kJ mol-1 at 25 °C) and an enthalpic increase (ΔH‡(a) = 30.87 and ΔH‡(d) =5.0 kJ∙mol-1 at 25 °C). Independent of the nature of the Hofmeister ions, the salts KCl or KSCN increased complex stability by decreasing both the kinetic and thermodynamic enthalpy values, through shielding of the electrostatic interactions at the electric double layer of the interacting molecules. An increase in temperature favored both the association of the free interacting molecules and the dissociation of the thermodynamically stable ß-cas/Qct complexes. These results provide insights into the ß-cas/Qct interaction process and contribute to the understanding of how Hofmeister ions can modulate intermolecular interactions between proteins and small molecules.


Assuntos
Caseínas/química , Simulação de Dinâmica Molecular , Quercetina/química , Ressonância de Plasmônio de Superfície , Termodinâmica , Cinética , Tamanho da Partícula , Propriedades de Superfície
12.
J Colloid Interface Sci ; 533: 678-691, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30196112

RESUMO

Sugarcane bagasse cellulose mixed ester succinate phthalate (SBSPh) was synthesized by a novel one-pot reaction method. The effects of temperature, time and mole fraction of succinic anhydride (χSA) on the responses weight gain (wg), number of carboxylic acid groups (nT,COOH), and adsorption capacity (q) of Co2+ and Ni2+ were evaluated by a 23 experimental design. The chemical structure of the material was elucidated by Fourier transform infrared, 13C Multiple Cross-Polarization solid-state NMR spectroscopy and 1H NMR relaxometry. The best SBSPh synthesis condition (100 °C, 11 h, χSA of 0.2) yielded a wg of 59.1%, nT,COOH of 3.41 mmol g-1, and values of qCo2+ and qNi2+ of 0.348 and 0.346 mmol g-1, respectively. The Sips model fitted better the equilibrium data, and the maximum adsorption capacities (pH 5.75 and 25 °C) estimated by this model were 0.62 and 0.53 mmol g-1 for Co2+ and Ni2+, respectively. The ΔadsH° values estimated by isothermal titration calorimetry were 8.43 and 7.79 kJ mol-1 for Co2+ and Ni2+, respectively. Desorption and re-adsorption efficiencies were evaluated by a 22 experimental design, which showed that SBSPh adsorbent can be recovered and reused without significant loss of adsorption capacity.


Assuntos
Celulose/química , Cobalto/isolamento & purificação , Ésteres/química , Níquel/isolamento & purificação , Saccharum/química , Cobalto/química , Estrutura Molecular , Níquel/química , Tamanho da Partícula , Ácidos Ftálicos/química , Soluções , Succinatos/química , Propriedades de Superfície , Água/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-18434262

RESUMO

This work aimed to study the partition of cheese whey proteins alpha-lactoalbumin and beta-lactoglobulin using aqueous two-phase system by applying the cloud point extraction technique. The cloud point temperatures were determined under different concentrations of copolymer and salt. The system providing the best protein separation conditions was 20 mass% of copolymer PE61 and potassium phosphate salt solution of 100 mM, at pH 7. The protein alpha-lactoalbumin remained preferentially in the aqueous phase and the beta-lactoglobulin was transferred to the copolymer phase.


Assuntos
Lactalbumina/isolamento & purificação , Lactoglobulinas/isolamento & purificação , Temperatura
14.
Food Chem ; 241: 358-363, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958540

RESUMO

Polydiacetylene (PDA) vesicles have been applied as optical sensors in different areas, although there are difficulties in controlling their responses. In this study, we prepared nanoblends of PDA with triblock copolymers (TC) as a better sensor system for detecting temperature change. The influences of diacetylene (DA) monomer, and the TC chemical structure and concentration on the colorimetric response (CR) were examined. The TC/PDA nanoblend was remarkably more sensitive to temperature change, than classical vesicles. A higher L64 concentration of 12.0% (w/w) reduced the chromatic transition temperature (Ttr) to as low as 24°C. When using different TCs, the Ttr values can be ordered as L35

Assuntos
Polímeros/química , Poli-Inos/química , Colorimetria , Interações Hidrofóbicas e Hidrofílicas , Polímero Poliacetilênico
15.
J Colloid Interface Sci ; 515: 172-188, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29335184

RESUMO

Trimellitated-sugarcane bagasse (STA) was used as an environmentally friendly adsorbent for removal of the basic dyes auramine-O (AO) and safranin-T (ST) from aqueous solutions at pH 4.5 and 7.0. Dye adsorption was evaluated as a function of STA dosage, agitation speed, solution pH, contact time, and initial dye concentration. Pseudo-first- and pseudo-second-order, Elovich, intraparticle diffusion, and Boyd models were used to model adsorption kinetics. Langmuir, Dubinin-Radushkevich, Redlich-Peterson, Sips, Hill-de Boer, and Fowler-Guggenheim models were used to model adsorption isotherms, while a Scatchard plot was used to evaluate the existence of different adsorption sites. Maximum adsorption capacities for removal of AO and ST were 1.005 and 0.638 mmol g-1 at pH 4.5, and 1.734 and 1.230 mmol g-1 at pH 7.0, respectively. Adsorption enthalpy changes obtained by isothermal titration calorimetry (ITC) ranged from -21.07 ±â€¯0.25 to -7.19 ±â€¯0.05 kJ mol-1, indicating that both dyes interacted with STA by physisorption. Dye desorption efficiencies ranged from 41 to 51%, and re-adsorption efficiencies ranged from 66 to 87%, showing that STA can be reused in new adsorption cycles. ITC data combined with isotherm studies allowed clarification of adsorption interactions.

16.
J Colloid Interface Sci ; 516: 431-445, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408133

RESUMO

In the second part of this series of studies, the monocomponent adsorption of Cu2+, Co2+ and Ni2+ onto STA adsorbent in a fixed-bed column was investigated and optimized using a 22 central composite design. The process variables studied were: initial metal ion concentration and spatial time, and the optimized responses were: adsorption capacity of the bed (Qmax), efficiency of the adsorption process (EAP), and effective use of the bed (H). The higher Qmax for Cu2+, Co2+ and Ni2+ were 1.060, 0.800 and 1.029 mmol/g, respectively. The breakthrough curves were modeled by the original Thomas and Bohart-Adams models. The changes in enthalpy (ΔadsH°) of adsorption of the metal ions onto STA were determined by isothermal titration calorimetry (ITC). The values of ΔadsH° were in the range of 3.0-6.8 kJ/mol, suggesting that the adsorption process involved physisorption. Desorption (Edes) and re-adsorption (Ere-ads) of metal ions from the STA adsorbent were also investigated in batch mode, and the optimum conditions were applied for three cycles of adsorption/desorption in a fixed bed column. For these cycles, the lowest values of Edes and Ere-ads were 95 and 92.3%, respectively, showing that STA is a promising candidate for real applications on a large scale.

17.
Food Chem ; 242: 505-512, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037721

RESUMO

Bovine serum albumin (BSA)/curcumin binding and dye photodegradation stability were evaluated. BSA/curcumin complex showed 1:1 stoichiometry, but the thermodynamic binding parameters depended on the technique used and BSA conformation. The binding constant was of the order of 105L·mol-1 by fluorescence and microcalorimetric, and 103 and 104L·mol-1 by surface plasmon resonance (steady-state equilibrium and kinetic experiments, respectively). For native BSA/curcumin, fluorescence indicated an enthalpic and entropic driven process based on the standard enthalpy change (ΔH○F=-8.67kJ·mol-1), while microcalorimetry showed an entropic driven binding process (ΔH○cal=29.11kJ·mol-1). For the unfolded BSA/curcumin complex, it was found thatp ΔH○F=-16.12kJ·mol-1 and ΔH○cal=-42.63kJ·mol-1. BSA (mainly native) increased the curcumin photodegradation stability. This work proved the importance of using different techniques to characterize the protein-ligand binding.


Assuntos
Curcumina/química , Soroalbumina Bovina/química , Animais , Calorimetria , Bovinos , Entropia , Fluorescência , Cinética , Conformação Molecular , Ligação Proteica , Termodinâmica
18.
Int J Biol Macromol ; 117: 1039-1049, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29758307

RESUMO

Here, investigation was made of the interaction between lactoferrin (Lf) and the anionic surfactants sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), and sodium decyl sulfate (DSS), using isothermal titration calorimetry, Nano differential scanning calorimetry (NanoDSC), and fluorescence spectroscopy. The Lf-surfactant interaction was enthalpically favorable (the integral enthalpy change ranged from -5.99 kJ mol-1, for SDS at pH 3.0, to -0.61 kJ mol-1, for DSS at pH 12.0) and promoted denaturation of the protein. The Lf denaturation efficiency followed the order DSS < SDS < SDBS. The adsorption capacity of the protein with respect to surfactant strongly depended on pH and the surfactant structure, reaching a maximum value of 505 SDBS molecules per gram of Lf at pH 3.0. The different efficiencies of the surfactants in denaturing Lf were attributed to the balance of hydrophobic and electrostatic interactions, which also depended on pH and the surfactant structure, highlighting the SDBS-tryptophan residue specific interaction, where SDBS acted as a quencher of fluorescence. Interestingly, the NanoDSC and fluorescence measurements showed that the ferric ion bound to Lf increased its stability against denaturation induced by the surfactants. The results have important implications for understanding the influence of surfactants on structural changes in metalloproteins.


Assuntos
Ferro/química , Lactoferrina/química , Desnaturação Proteica/efeitos dos fármacos , Tensoativos/farmacologia , Animais , Bovinos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica/efeitos dos fármacos , Tensoativos/química , Temperatura
19.
J Colloid Interface Sci ; 512: 575-590, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29100162

RESUMO

In the third part of this series of studies, the adsorption of the basic textile dyes auramine-O (AO) and safranin-T (ST) on a carboxylated cellulose derivative (CTA) were evaluated in mono- and bi-component spiked aqueous solutions. Adsorption studies were developed as a function of solution pH, contact time, and initial dye concentration. Adsorption kinetic data were modeled by monocomponent kinetic models of pseudo-first- (PFO), pseudo-second-order (PSO), intraparticle diffusion, and Boyd, while the competitive kinetic model of Corsel was used to model bicomponent kinetic data. Monocomponent adsorption equilibrium data were modeled by the Langmuir, Sips, Fowler-Guggenhein, Hill de-Boer, and Konda models, while the IAST and RAST models were used to model bicomponent equilibrium data. Monocomponent maximum adsorption capacities for AO and ST at pH 4.5 were 2.841 and 3.691 mmol g-1, and at pH 7.0 were 5.443 and 4.074 mmol g-1, respectively. Bicomponent maximum adsorption capacities for AO and ST at pH 7.0 were 1.230 and 3.728 mmol g-1. Adsorption enthalpy changes (ΔadsH) were obtained using isothermal titration calorimetry. The values of ΔadsH ranged from -18.83 to -5.60 kJ mol-1, suggesting that physisorption controlled the adsorption process. Desorption and re-adsorption of CTA was also evaluated.

20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 858(1-2): 205-10, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17869592

RESUMO

This study evaluates the influence of type of salt and temperature on the partition coefficient of caseinomacropetide (CMP) to determine the best conditions for the recovery of CMP in aqueous two-phase systems (ATPS) composed by poly(ethylene glycol) (PEG) 1500 and an inorganic salt (potassium phosphate, sodium citrate, lithium sulfate or sodium sulfate). In all systems, CMP presented affinity for the PEG-rich phase. The PEG1500+lithium sulfate showed the highest values of partitioning coefficient. In addition, thermodynamic parameters (DeltaH degrees , DeltaS degrees , DeltaG degrees) as a function of temperature, were calculated for the system PEG1500-sodium citrate at different PEG concentrations and the results imply thermodynamic differences between partitioning of CMP in this system.


Assuntos
Caseínas/química , Fracionamento Químico/métodos , Fragmentos de Peptídeos/química , Polietilenoglicóis/química , Sais/química , Temperatura , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa