RESUMO
Nano- and microplastic particles (NMP) are strong environmental contaminants affecting marine ecosystems and human health. The negligible use of biodegradable plastics and the lack of knowledge about plastic uptake, accumulation, and functional consequences led us to investigate the short- and long-term effects in freshly isolated skin cells from mice. Using fluorescent NMP of several sizes (200 nm to 6 µm), efficient cellular uptake was observed, causing, however, only minor acute toxicity as metabolic activity and apoptosis data suggested, albeit changes in intracellular reactive species and thiol levels were observed. The internalized NMP induced an altered expression of various targets of the nuclear factor-2-related transcription factor 2 pathway and were accompanied by changed antioxidant and oxidative stress signaling responses, as suggested by altered heme oxygenase 1 and glutathione peroxide 2 levels. A highly increased beta-catenin expression under acute but not chronic NMP exposure was concomitant with a strong translocation from membrane to the nucleus and subsequent transcription activation of Wnt signaling target genes after both single-dose and chronic long-term NMP exposure. Moreover, fibroblast-to-myofibroblast transdifferentiation accompanied by an increase of α smooth muscle actin and collagen expression was observed. Together with several NMP-induced changes in junctional and adherence protein expression, our study for the first time elucidates the acute and chronic effects of NMP of different sizes in primary skin cells' signaling and functional biology, contributing to a better understanding of nano- and microplastic to health risks in higher vertebrates.
Assuntos
Microplásticos , Poliestirenos , Via de Sinalização Wnt , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacologia , Ecossistema , Microplásticos/toxicidade , Estresse Oxidativo , Poliestirenos/toxicidadeRESUMO
The ubiquitous nature of micro- (MP) and nanoplastics (NP) is a growing environmental concern. However, their potential impact on human health remains unknown. Research increasingly focused on using rodent models to understand the effects of exposure to individual plastic polymers. In vivo data showed critical exposure effects depending on particle size, polymer, shape, charge, concentration, and exposure routes. Those effects included local inflammation, oxidative stress, and metabolic disruption, leading to gastrointestinal toxicity, hepatotoxicity, reproduction disorders, and neurotoxic effects. This review distillates the current knowledge regarding rodent models exposed to MP and NP with different experimental designs assessing biodistribution, bioaccumulation, and biological responses. Rodents exposed to MP and NP showed particle accumulation in several tissues. Critical responses included local inflammation and oxidative stress, leading to microbiota dysbiosis, metabolic, hepatic, and reproductive disorders, and diseases exacerbation. Most studies used MP and NP commercially provided and doses higher than found in environmental exposure. Hence, standardized sampling techniques and improved characterization of environmental MP and NP are needed and may help in toxicity assessments of relevant particle mixtures, filling knowledge gaps in the literature.
Assuntos
Microplásticos , Plásticos , Animais , Inflamação , Microplásticos/toxicidade , Plásticos/toxicidade , Roedores , Distribuição TecidualRESUMO
The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity. Therefore, developing new methods for producing heterogenous NMPs as observed in the environment is important as reference materials for research. Thus, we aimed to generate and characterize NMPs suspensions using a modified ultrasonic protocol and to investigate their biological effects after exposure to different human cell lines. To this end, we produced polyethylene terephthalate (PET) NMPs suspensions and characterized the particles by dynamic light scattering and scanning electron microscopy. Ultrasound treatment induced polymer degradation into smaller and heterogeneous PET NMPs shape fragments with similar surface chemistry before and after treatment. A polydisperse suspension of PET NMPs with 781 nm in average size and negative surface charge was generated. Then, the PET NMPs were cultured with two human cell lines, A549 (lung) and HaCaT (skin), addressing inhalation and topical exposure routes. Both cell lines interacted with and have taken up PET NMPs as quantified via cellular granularity assay. A549 but not HaCaT cell metabolism, viability, and cell death were affected by PET NMPs. In HaCaT keratinocytes, large PET NMPs provoked genotoxic effects. In both cell lines, PET NMPs exposure affected oxidative stress, cytokine release, and cell morphology, independently of concentration, which we could relate mechanistically to Nrf2 and autophagy activation. Collectively, we present a new PET NMP generation model suitable for studying the environmental and biological consequences of exposure to this polymer.
Assuntos
Microplásticos , Polietilenotereftalatos , Humanos , Polietilenotereftalatos/toxicidade , Polímeros , Inflamação/induzido quimicamente , Estresse Oxidativo , Autofagia , Plásticos , PolietilenoRESUMO
Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.
Assuntos
Tamanho da Partícula , Poliestirenos , Saliva , Proteínas e Peptídeos Salivares , Propriedades de Superfície , Humanos , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Poliestirenos/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Nanopartículas/química , Microplásticos/químicaRESUMO
Plastic waste is a global issue leaving no continents unaffected. In the environment, ultraviolet radiation and shear forces in water and land contribute to generating micro- and nanoplastic particles (MNPP), which organisms can easily take up. Plastic particles enter the human food chain, and the accumulation of particles within the human body is expected. Crossing epithelial barriers and cellular uptake of MNPP involves the interaction of plastic particles with lipids. To this end, we generated unilamellar vesicles from POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) and POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) and incubated them with pristine, carboxylated, or aminated polystyrene spheres (about 1 µm in diameter) to generate lipid coronas around the particles. Lipid coronas enhanced the average particle sizes and partially changed the MNPP zeta potential and polydispersity. In addition, lipid coronas led to significantly enhanced uptake of MNPP particles but not their cytotoxicity, as determined by flow cytometry. Finally, adding proteins to lipid corona nanoparticles further modified MNPP uptake by reducing the uptake kinetics, especially in pristine and carboxylated plastic samples. In conclusion, our study demonstrates for the first time the impact of different types of lipids on differently charged MNPP particles and the biological consequences of such modifications to better understand the potential hazards of plastic exposure.
RESUMO
The ubiquitous nature of microplastic particles (MP) is a growing environmental and ecological concern due to their impact on aquatic and terrestrial systems and potentially on human health. The potential impact on human health may be due to MP daily exposure by several routes, but little is known about the cellular effects. Previous in vitro and in vivo studies have described inflammation, oxidative stress, and metabolic disruption upon plastic exposure, while the effect of individual plastic parameters is not fully unraveled. To this end, we investigated plastic exposure to different polymer types, sizes, and concentrations in three human cell lines (A549, HEK293, and HeLa). Particles were polystyrene (PS) or polymethylmethacrylate (PMMA) in three sizes and concentrations, and amine-modified PS served as positive control. After MP size validation using dynamic light scattering, a high-throughput high-content imaging-based and algorithm-driven multi-z-stack analysis was established to quantify intracellular fluorescent particle accumulation in 3D objects and cell maximum intensity projections. MP uptake correlated with concentration and for PS with size (1.040 µm), while for PMMA it was maximal for 400 nm MP. Uptake increased in HEK cells independent of MP parameters. Except for positive controls, no major effect on metabolic activity, viability, and cell cycle was observed, while intracellular thiol content and cytokine secretion were affected to a considerable extent. Interestingly, particle uptake was correlated significantly with particle size and concentration, underlining the dependence of MP parameters on biological effects.
Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Polímeros , Plásticos/análise , Polimetil Metacrilato , Células HEK293 , Poliestirenos/toxicidade , Poliestirenos/análise , Inflamação/induzido quimicamente , Poluentes Químicos da Água/análiseRESUMO
Research on nano- and micro-plastic particles (NMPPs) suggests their potential threat to human health. Some studies have even suggested genotoxic effects of NMPP exposure, such as micronuclei (MN) formation, while others found the opposite. To clarify the ability of NMPP to induce MN formation, we used non-malignant HaCaT keratinocytes and exposed these to a variety of polystyrene (PS) and poly methyl methacrylate (PMMA) particle types at different concentrations and three different sizes. Investigations were performed following acute (one day) and chronic exposure (five weeks) against cytotoxic (amino-modified NMPPs) and genotoxic (methyl methanesulfonate, MMS) positive controls. An optimized high-content imaging workflow was established strictly according to OECD guidelines for analysis. Algorithm-based object segmentation and MN identification led to computer-driven, unsupervised quantitative image analysis results on MN frequencies among the different conditions and thousands of cells per condition. This could only be realized using accutase, allowing for partial cell detachment for optimal identification of bi-nucleated cells. Cytotoxic amino-modified particles were not genotoxic; MMS was both. During acute and long-term studies, PS and PMMA particles were neither toxic nor increased MN formation, except for 1000 nm PS particles at the highest concentration of unphysiological 100 µg/mL. Interestingly, ROS formation was significantly decreased in this condition. Hence, most non-charged polymer particles were neither toxic nor genotoxic, while aminated particles were toxic but not genotoxic. Altogether, we present an optimized quantitative imaging workflow applied to a timely research question in environmental toxicity.
RESUMO
PURPOSE: Papillary thyroid carcinoma (PTC) is the most frequent subtype of thyroid cancer; Hashimoto's thyroiditis (HT), autoimmune disease, commonly affects the thyroid gland; there is possibly a correlation between both, but the exact mechanisms that involve this relationship are still under debate. Since oxidative stress (OS) and the inflammatory environment participate in the development of several types of cancer, the objective of the present study was to establish the microenvironment and systemic participation of OS and inflammatory markers in patients with PTC and HT. METHODS: Blood and tissue samples were collected from 115 patients: BENIGN (n = 63); PTC (n = 27); HT (n = 15) and PTC + HT (n = 10), and sixty-three were samples from healthy individuals (control group). RESULTS: Superoxide dismutase, Catalase, reduced Glutathione, markers of lipid peroxidation and inflammation were evaluated in blood. Immunohistochemistry was performed on 3-nitrotyrosine, 4-hydroxynonenal, Ki-67 and VEGF. The results indicate that antioxidant enzymes were more active in groups with thyroid disorders compared to control, while the concentration of Reduced glutathione was reduced in BENIGN and PTC groups. When PTC and PTC + HT groups were analyzed, no significant differences were found in relation to the antioxidant defense and inflammatory markers. The ability to contain the induced lipid peroxidation was lower and a high level of malondialdehyde was observed in the PTC group. All immunohistochemical markers had higher scores in the PTC group compared to PTC + HT. CONCLUSION: There was a more pronounced presence of OS and a greater activity of cell proliferation and angiogenesis markers in PTC than in PTC + HT group.
Assuntos
Carcinoma Papilar , Doença de Hashimoto , Neoplasias da Glândula Tireoide , Antioxidantes , Carcinoma Papilar/patologia , Catalase , Glutationa , Doença de Hashimoto/complicações , Humanos , Antígeno Ki-67 , Malondialdeído , Estresse Oxidativo , Superóxido Dismutase , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/patologia , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
AIMS: This work investigated the effects of creatine supplementation on different pathways related to the pathogenesis of non-alcoholic fatty liver disease and alcoholic liver disease. MAIN METHODS: To induce alcoholic liver disease, male Swiss mice were divided into three groups: control, ethanol and ethanol supplemented with creatine. To induce non-alcoholic fatty liver disease, mice were divided into three groups: control, high-fat diet and high-fat diet supplemented with creatine. Each group consisted of eight animals. In both cases, creatine monohydrate was added to the diets (1 %; weight/vol). KEY FINDINGS: Creatine supplementation prevented high-fat diet-induced non-alcoholic fatty liver disease progression, demonstrated by attenuated liver fat accumulation and liver damage. On the other hand, when combined with ethanol, creatine supplementation up-regulated key genes related to ethanol metabolism, oxidative stress, inflammation and lipid synthesis, and exacerbated ethanol-induced liver steatosis and damage, demonstrated by increased liver fat accumulation and histopathological score, as well as elevated oxidative damage markers and inflammatory mediators. SIGNIFICANCE: Our results clearly demonstrated creatine supplementation exerts different outcomes in relation to non-alcoholic fatty liver disease and alcoholic liver disease, namely it protects against high-fat diet-induced non-alcoholic fatty liver disease but exacerbates ethanol-induced alcoholic liver disease. The exacerbating effects of the creatine and ethanol combination appear to be related to oxidative stress and inflammation-mediated up-regulation of ethanol metabolism.
Assuntos
Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Creatina/farmacologia , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/prevenção & controle , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Hepatopatias Alcoólicas/patologia , Etanol/toxicidade , Etanol/metabolismo , Estresse Oxidativo , Inflamação/patologiaRESUMO
The ability to evade apoptosis is an important mechanism of drug resistance and tumor progression in breast cancer. The induction of different pathways of cell death could be an important strategy to limit tumor progression. Metformin, a drug used to treat type two diabetes, has demonstrated promising results in breast cancer experiments. However, little is known about the patterns of cell death induced by this drug. We analyzed the involvement of apoptosis, necroptosis and ferroptosis in the toxicity of metformin in MCF-7 cells, evaluating proliferation, viability and oxidative stress. It was used different inhibitors of cell death: Z-VAD, a pan-caspase inhibitor that blocks apoptosis; Necrostatin-1, which inhibits RIPK1 activity and blocks necroptosis; and the iron chelator, deferoxamine, that chelates iron and prevents ferroptosis. The participation of oxidative stress was analyzed through the evaluation of total thiols, reduced glutathione (GSH) and malondialdehyde (MDA). Our results showed that metformin increased cell death, reduced proliferation, thiol and GSH and increased MDA in cells. After the association between metformin and Z-VAD or Necrostatin-1, the drug toxicity was abolished. Ferroptosis did not significantly enrolled in metformin action against MCF-7 cells. The preservation of cellular antioxidants was found in all situations that cell death was blocked. Together, these results reveals that metformin induces necroptosis and apoptosis in MCF-7 cells and oxidative stress generation play a role in these two pathways of cell death. This information could help future studies to improve strategies to breast cancer treatment.