Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Pathog ; 16(8): e1008699, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32764827

RESUMO

São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.


Assuntos
Genoma Viral , Doenças dos Primatas/virologia , Febre Amarela/veterinária , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Zoonoses/virologia , Animais , Brasil/epidemiologia , Surtos de Doenças , Genômica , Humanos , Filogenia , Filogeografia , Doenças dos Primatas/epidemiologia , Doenças dos Primatas/transmissão , Primatas/virologia , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Zoonoses/epidemiologia , Zoonoses/transmissão
2.
Proc Natl Acad Sci U S A ; 116(47): 23534-23541, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31591207

RESUMO

Mitochondrial superoxide dismutase (SOD2) suppresses tumor initiation but promotes invasion and dissemination of tumor cells at later stages of the disease. The mechanism of this functional switch remains poorly defined. Our results indicate that as SOD2 expression increases acetylation of lysine 68 ensues. Acetylated SOD2 promotes hypoxic signaling via increased mitochondrial reactive oxygen species (mtROS). mtROS, in turn, stabilize hypoxia-induced factor 2α (HIF2α), a transcription factor upstream of "stemness" genes such as Oct4, Sox2, and Nanog. In this sense, our findings indicate that SOD2K68Ac and mtROS are linked to stemness reprogramming in breast cancer cells via HIF2α signaling. Based on these findings we propose that, as tumors evolve, the accumulation of SOD2K68Ac turns on a mitochondrial pathway to stemness that depends on HIF2α and may be relevant for the progression of breast cancer toward poor outcomes.


Assuntos
Neoplasias da Mama/patologia , Autorrenovação Celular/fisiologia , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/fisiologia , Superóxido Dismutase/fisiologia , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Neoplasias da Mama/metabolismo , Reprogramação Celular , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/enzimologia , Invasividade Neoplásica , Proteínas de Neoplasias/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/química
3.
Clin Infect Dis ; 73(7): e2436-e2443, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32766829

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) emerged in the Americas in 2013 and has caused approximately 2.1 million cases and >600 deaths. A retrospective investigation was undertaken to describe clinical, epidemiological, and viral genomic features associated with deaths caused by CHIKV in Ceará state, northeast Brazil. METHODS: Sera, cerebrospinal fluid (CSF), and tissue samples from 100 fatal cases with suspected arbovirus infection were tested for CHIKV, dengue virus (DENV), and Zika virus (ZIKV). Clinical, epidemiological, and death reports were obtained for patients with confirmed CHIKV infection. Logistic regression analysis was undertaken to identify independent factors associated with risk of death during CHIKV infection. Phylogenetic analysis was conducted using whole genomes from a subset of cases. RESULTS: Sixty-eight fatal cases had CHIKV infection confirmed by reverse-transcription quantitative polymerase chain reaction (52.9%), viral antigen (41.1%), and/or specific immunoglobulin M (63.2%). Co-detection of CHIKV with DENV was found in 22% of fatal cases, ZIKV in 2.9%, and DENV and ZIKV in 1.5%. A total of 39 CHIKV deaths presented with neurological signs and symptoms, and CHIKV-RNA was found in the CSF of 92.3% of these patients. Fatal outcomes were associated with irreversible multiple organ dysfunction syndrome. Patients with diabetes appear to die at a higher frequency during the subacute phase. Genetic analysis showed circulation of 2 CHIKV East-Central-South African (ECSA) lineages in Ceará and revealed no unique virus genomic mutation associated with fatal outcome. CONCLUSIONS: The investigation of the largest cross-sectional cohort of CHIKV deaths to date reveals that CHIKV-ECSA strains can cause death in individuals from both risk and nonrisk groups, including young adults.


Assuntos
Febre de Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Estudos Transversais , Humanos , Filogenia , Estudos Retrospectivos , Adulto Jovem , Zika virus/genética , Infecção por Zika virus/epidemiologia
4.
FASEB J ; 34(12): 16034-16048, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047385

RESUMO

Inorganic arsenic (iAs/As2 O32- ) is an environmental toxicant found in watersheds around the world including in densely populated areas. iAs is a class I carcinogen known to target the skin, lungs, bladder, and digestive organs, but its role as a primary breast carcinogen remains controversial. Here, we examined a different possibility: that exposure to iAs promotes the transition of well-differentiated epithelial breast cancer cells characterized by estrogen and progesterone receptor expression (ER+/PR+), to more basal phenotypes characterized by active proliferation, and propensity to metastasis in vivo. Our results indicate two clear phenotypic responses to low-level iAs that depend on the duration of the exposure. Short-term pulses of iAs activate ER signaling, consistent with its reported pseudo-estrogen activity, but longer-term, chronic treatments for over 6 months suppresses both ER and PR expression and signaling. In fact, washout of these chronically exposed cells for up to 1 month failed to fully reverse the transcriptional and phenotypic effects of prolonged treatments, indicating durable changes in cellular physiologic identity. RNA-seq studies found that chronic iAs drives the transition toward more basal phenotypes characterized by impaired hormone receptor signaling despite the conservation of estrogen receptor expression. Because treatments for breast cancer patients are largely designed based on the detection of hormone receptor expression, our results suggest greater scrutiny of ER+ cancers in patients exposed to iAs, because these tumors may spawn more aggressive phenotypes than unexposed ER+ tumors, in particular, basal subtypes that tend to develop therapy resistance and metastasis.


Assuntos
Arsênio/fisiologia , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/patologia , Mama/efeitos dos fármacos , Mama/patologia , Animais , Mama/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597773

RESUMO

The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.


Assuntos
Surtos de Doenças , Genoma Viral , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/genética , Aedes/virologia , Alouatta/virologia , Animais , Brasil/epidemiologia , Callithrix/virologia , Cebus/virologia , Feminino , Variação Genética , Humanos , Incidência , Leontopithecus/virologia , Masculino , Mosquitos Vetores/virologia , Filogenia , Filogeografia , Sequenciamento Completo do Genoma , Febre Amarela/virologia , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/patogenicidade
6.
Mem Inst Oswaldo Cruz ; 115: e190423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32428189

RESUMO

BACKGROUND Despite efforts to mitigate the impact of dengue virus (DENV) epidemics, the virus remains a public health problem in tropical and subtropical regions around the world. Most DENV cases in the Americas between January and July 2019 were reported in Brazil. São Paulo State in the southeast of Brazil has reported nearly half of all DENV infections in the country. OBJECTIVES To understand the origin and dynamics of the 2019 DENV outbreak. METHODS Here using portable nanopore sequencing we generated20 new DENV genome sequences from viremic patients with suspected dengue infection residing in two of the most-affected municipalities of São Paulo State, Araraquara and São José do Rio Preto. We conducted a comprehensive phylogenetic analysis with 1,630 global DENV strains to better understand the evolutionary history of the DENV lineages that currently circulate in the region. FINDINGS The new outbreak strains were classified as DENV2 genotype III (American/Asian genotype). Our analysis shows that the 2019 outbreak is the result of a novel DENV lineage that was recently introduced to Brazil from the Caribbean region. Dating phylogeographic analysis suggests that DENV2-III BR-4 was introduced to Brazil in or around early 2014, possibly from the Caribbean region. MAIN CONCLUSIONS Our study describes the early detection of a newly introduced and rapidly-expanding DENV2 virus lineage in Brazil.


Assuntos
Vírus da Dengue/genética , Dengue/virologia , Variação Genética , Genômica , Brasil , Genótipo , Humanos , Filogenia , RNA Viral/genética
7.
Euro Surveill ; 24(2)2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30646975

RESUMO

We report an ongoing measles outbreak in Manaus, Amazonas state, Brazil. As at 3 November 2018, 1,631 cases were confirmed corresponding to an incidence of 75.3 per 100,000 inhabitants; all five sanitary districts presented confirmed cases. Reintroduction of measles virus in Manaus is likely related to the current outbreak in Venezuela and due to recent decline in measles vaccine coverage. Given the current scenario, prevention and control measures should target individuals aged 15-29 years.


Assuntos
Notificação de Doenças/estatística & dados numéricos , Surtos de Doenças , Imunização/estatística & dados numéricos , Vacina contra Sarampo/administração & dosagem , Vírus do Sarampo/isolamento & purificação , Sarampo/epidemiologia , Cobertura Vacinal/estatística & dados numéricos , Adolescente , Adulto , Brasil/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Programas de Imunização , Lactente , Masculino , Sarampo/diagnóstico , Sarampo/prevenção & controle , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Pessoa de Meia-Idade , Venezuela/epidemiologia , Adulto Jovem
8.
Int J Mol Sci ; 18(9)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28858203

RESUMO

Only a small proportion of women who are exposed to infection with high-risk human papillomavirus (HR-HPV) progress to persistent infection and develop cervical cancer (CC). The immune response and genetic background of the host may affect the risk of progression from a HR-HPV infection to lesions and cancer. However, to our knowledge, no studies has been conducted to evaluate the relationship between variability of human leukocyte antigens (HLA) genes and serum cytokine expression in this pathology. In the current study, we examined the associations of HLA alleles and haplotypes including Class I (HLA-A, -B and -C) and II (HLA-DRB1, -DQA1 and -DQB1) with serum levels of cytokines interleukin (IL)-6, tumor necrosis factor-α (TNF-α), IL-10 and IL-17 as well as risks of HPV infections, lesions and CC among admixed Brazilian women. HLA polymorphisms were associated with an increased risk or protection from HPV, lesions and CC. Additionally, we demonstrated a potential association of a HLA class I haplotype (HLA-B*14-C*08) with higher IL-10 cytokine serum levels in cervical disease, suggesting an association between HLA class I and specific cytokines in cervical carcinogenesis. However, larger studies with detailed HPV types coupled with genetic data are needed to further evaluate the effects of HLA and CC by HPV genotype.


Assuntos
Citocinas/sangue , Antígenos HLA/genética , Proteínas de Neoplasias , Infecções por Papillomavirus , Polimorfismo Genético , Neoplasias do Colo do Útero , Adolescente , Adulto , Idoso , Citocinas/genética , Feminino , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/genética , Infecções por Papillomavirus/sangue , Neoplasias do Colo do Útero/sangue , Neoplasias do Colo do Útero/genética
10.
Arch Gynecol Obstet ; 293(4): 857-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26315473

RESUMO

PURPOSE: The persistence of high-risk oncogenic human papillomavirus (HR-HPV) infection and its integration into the host genome are key steps in the induction of malignant alterations. c-MYC chromosome region is a frequent localization for HPV insertion that has been observed in chromosome band 8q24 by fluorescence in situ hybridization (FISH). We report the HPV viral integration and amplification patterns of the c-MYC gene in cytological smears with FISH as a potential biomarker for the progression of squamous intraepithelial lesions (SIL). METHODS: HPV detection and genotyping by polymerase chain reaction (PCR) and FISH analysis by "Vysis Cervical FISH Probe" kit (ABBOTT Molecular Inc.) were performed in 37 cervical samples including 8 NILM, 7 ASC-US, 7 LSIL, 3 ASC-H, 7 HSIL and 5 SCC. RESULTS: The results show concordance between FISH and PCR techniques for HPV detection. The majority of the samples contained HR-HPV, the majority being -16 and -18 genotypes. HPV integration as determined by FISH was most frequent in high-risk lesions. The c-MYC gene amplification was found only in HPV-positive samples and was detected primarily in high-risk lesions and in cells with an integrated form of HPV. CONCLUSIONS: HPV integration and c-MYC gene amplification detected by FISH could be an important biomarker for use in clinical practice to determine SIL with a risk of progression.


Assuntos
Amplificação de Genes , Genes myc/genética , Hibridização in Situ Fluorescente/métodos , Papillomaviridae/genética , Infecções por Papillomavirus/diagnóstico , Lesões Intraepiteliais Escamosas Cervicais/genética , Neoplasias do Colo do Útero/genética , Adulto , Progressão da Doença , Feminino , Genótipo , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Reação em Cadeia da Polimerase/métodos , Lesões Intraepiteliais Escamosas Cervicais/diagnóstico , Lesões Intraepiteliais Escamosas Cervicais/virologia , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/virologia , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/virologia
11.
Biochim Biophys Acta ; 1846(2): 576-89, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25453366

RESUMO

While persistent infection with oncogenic types of human Papillomavirus (HPV) is required for cervical epithelial cell transformation and cervical carcinogenesis, HPV infection alone is not sufficient to induce tumorigenesis. Only a minor fraction of HPV infections produce high-grade lesions and cervical cancer, suggesting complex host-virus interactions. Based on its pronounced immunoinhibitory properties, human leukocyte antigen (HLA)-G has been proposed as a possible prognostic biomarker and therapeutic target relevant in a wide variety of cancers and viral infections, but to date remains underexplored in cervical cancer. Given the possible influence of HLA-G on the clinical course of HPV infection, cervical lesions and cancer progression, a better understanding of HLA-G involvement in cervical carcinogenesis might contribute to two aspects of fundamental importance: 1. Characterization of a novel diagnostic/prognostic biomarker to identify cervical cancer and to monitor disease stage, critical for patient screening; 2. Identification of HLA-G-driven immune mechanisms involved in lesion development and cancer progression, leading to the development of strategies for modulating HLA-G expression for treatment purposes. Thus, this systematic review explores the potential involvement of HLA-G protein expression and polymorphisms in cervical carcinogenesis.


Assuntos
Antígenos HLA-G/fisiologia , Neoplasias do Colo do Útero/imunologia , Feminino , Antígenos HLA-G/genética , Humanos , Polimorfismo Genético , Prognóstico , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/terapia
12.
IUBMB Life ; 66(3): 167-181, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24668617

RESUMO

The field of redox biology has changed tremendously over the past 20 years. Formerly regarded as bi-products of the aerobic metabolism exclusively involved in tissue damage, reactive oxygen species (ROS) are now recognized as active participants of cell signaling events in health and in disease. In this sense, ROS and the more recently defined reactive nitrogen species (RNS) are, just like hormones and second messengers, acting as fundamental orchestrators of cell signaling pathways. The chemical modification of enzymes by ROS and RNS (that result in functional enzymatic alterations) accounts for a considerable fraction of the transient and persistent perturbations imposed by variations in oxidant levels. Upregulation of ROS and RNS in response to stress is a common cellular response that foments adaptation to a variety of physiologic alterations (hypoxia, hyperoxia, starvation, and cytokine production). Frequently, these are beneficial and increase the organisms' resistance against subsequent acute stress (preconditioning). Differently, the sustained ROS/RNS-dependent rerouting of signaling produces irreversible alterations in cellular functioning, often leading to pathogenic events. Thus, the duration and reversibility of protein oxidations define whether complex organisms remain "electronically" healthy. Among the 20 essential amino acids, four are particularly susceptible to oxidation: cysteine, methionine, tyrosine, and tryptophan. Here, we will critically review the mechanisms, implications, and repair systems involved in the redox modifications of these residues in proteins while analyzing well-characterized prototypic examples. Occasionally, we will discuss potential consequences of amino acid oxidation and speculate on the biologic necessity for such events in the context of adaptative redox signaling. © 2014 IUBMB Life, 66(3):167-181, 2014.

13.
Oncogene ; 40(36): 5455-5467, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34290400

RESUMO

Epidemiologic studies in diabetic patients as well as research in model organisms have indicated the potential of metformin as a drug candidate for the treatment of various types of cancer, including breast cancer. To date most of the anti-cancer properties of metformin have, in large part, been attributed either to the inhibition of mitochondrial NADH oxidase complex (Complex I in the electron transport chain) or the activation of AMP-activated kinase (AMPK). However, it is becoming increasingly clear that AMPK activation may be critical to alleviate metabolic and energetic stresses associated with tumor progression suggesting that it may, in fact, attenuate the toxicity of metformin instead of promoting it. Here, we demonstrate that AMPK opposes the detrimental effects of mitochondrial complex I inhibition by enhancing glycolysis at the expense of, and in a manner dependent on, pyruvate availability. We also found that metformin forces cells to rewire their metabolic grid in a manner that depends on AMPK, with AMPK-competent cells upregulating glycolysis and AMPK-deficient cell resorting to ketogenesis. In fact, while the killing effects of metformin were largely rescued by pyruvate in AMPKcompetent cells, AMPK-deficient cells required instead acetoacetate, a product of fatty acid catabolism indicating a switch from sugar to fatty acid metabolism as a central resource for ATP production in these cells. In summary, our results indicate that AMPK activation is not responsible for metformin anticancer activity and may instead alleviate energetic stress by activating glycolysis.


Assuntos
Proteínas Quinases Ativadas por AMP , Metformina , Neoplasias da Mama , Metabolismo dos Carboidratos , Metabolismo Energético , Glicólise , Humanos
14.
PLoS Negl Trop Dis ; 15(4): e0009290, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861753

RESUMO

Since introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sustained transmission, although much is unknown about its circulation in the midwestern states. Here, we analyze 24 novel partial and near complete CHIKV genomes from Cuiaba, an urban metropolis located in the Brazilian midwestern state of Mato Grosso (MT). Nanopore technology was used for sequencing CHIKV complete genomes. Phylogenetic and epidemiological approaches were used to explore the recent spatio-temporal evolution and spread of the CHIKV-ECSA genotype in Midwest Brazil as well as in the Americas. Epidemiological data revealed a reduction in the number of reported cases over 2018-2020, likely as a consequence of a gradual accumulation of herd-immunity. Phylogeographic reconstructions revealed that at least two independent introductions of the ECSA lineage occurred in MT from a dispersion event originating in the northeastern region and suggest that the midwestern Brazilian region appears to have acted as a source of virus transmission towards Paraguay, a bordering South American country. Our results show a complex dynamic of transmission between epidemic seasons and suggest a possible role of Brazil as a source for international dispersion of the CHIKV-ECSA genotype to other countries in the Americas.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/genética , Genoma Viral/genética , Adolescente , Adulto , Teorema de Bayes , Brasil/epidemiologia , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/isolamento & purificação , Monitoramento Epidemiológico , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Análise Espaço-Temporal , Sequenciamento Completo do Genoma , Adulto Jovem
15.
Nat Commun ; 12(1): 2296, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863880

RESUMO

Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015-2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Epidemias/prevenção & controle , Monitoramento Epidemiológico , Brasil/epidemiologia , Dengue/prevenção & controle , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Estudos de Viabilidade , Variação Genética , Genoma Viral/genética , Humanos , Unidades Móveis de Saúde , Epidemiologia Molecular , Tipagem Molecular , Filogenia , Estudo de Prova de Conceito , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Sequenciamento Completo do Genoma
16.
Front Public Health ; 8: 575536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520909

RESUMO

Antimicrobial resistance (AMR) is a major public health threat of global proportions, which has the potential to lead to approximately ten million deaths per year by 2050. Pressured by this wicked problem, in 2014, the World Health Organization launched a call for member states to share AMR data through the implementation of the Global Antimicrobial Resistance Surveillance System (GLASS), to appropriately scale and monitor the general situation world-widely. In 2017, Brazil joined GLASS and, in 2018, started its own national antimicrobial surveillance program (BR-GLASS) to understand the impact of resistance in the country. We compiled data obtained from the complete routine of three hospitals' microbiology labs during the year of 2018. This pilot data sums up to 200,874 antimicrobial susceptibility test results from 11,347 isolates. It represents 119 different microorganisms recovered from 44 distinct types of clinical samples. Specimens came from patients originating from 301 Brazilian cities, with 4,950 of these isolates from presumed Healthcare-Associated Infections (HAIs) and the other 6,397 community-acquired cases. The female population offered 58% of the collected samples, while the other 42% were of male origin. The urinary tract was the most common topography (6,372/11,347 isolates), followed by blood samples (2,072/11,347). Gram-negative predominated the bacterial isolates: Escherichia coli was the most prevalent in general, representing 4,030 isolates (89.0% of these from the urinary tract). Coagulase-negative Staphylococci were the most prevalent bacteria in blood samples. Besides these two species, the ESKAPE group have consolidated their prevalence. Regarding drug susceptibility results, 141,648 (70.5%) were susceptible, 9,950 (4.9%) intermediate, and 49,276 (24.5%) resistant. Acinetobacter baumannii was the most worrisome microorganism, with 65.3% of the overall antimicrobial susceptibility tests showing resistance, followed by ESBL-producing Klebsiella pneumoniae, with a global resistance rate of 59%. Although this is a pilot project (still limited to one state), this database shows the importance of a nation-wide surveillance program,[153mm][-12mm] Q14 especially considering it already had patients coming from 301 distinct counties and 18 different states. The BR-GLASS Program is an ongoing project that intends to encompass at least 95 hospitals distributed in all five geographical regions in Brazil within the next 5 years.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Brasil/epidemiologia , Farmacorresistência Bacteriana , Feminino , Humanos , Masculino , Projetos Piloto
17.
PLoS Negl Trop Dis ; 14(8): e0008405, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780745

RESUMO

Yellow fever virus (YFV) causes a clinical syndrome of acute hemorrhagic hepatitis. YFV transmission involves non-human primates (NHP), mosquitoes and humans. By late 2016, Brazil experienced the largest YFV outbreak of the last 100 years, with 2050 human confirmed cases, with 681 cases ending in death and 764 confirmed epizootic cases in NHP. Among affected areas, Bahia state in Northeastern was the only region with no autochthonous human cases. By using next generation sequence approach, we investigated the molecular epidemiology of YFV in NHP in Bahia and discuss what factors might have prevented human cases. We investigated 47 YFV positive tissue samples from NHP cases to generate 8 novel YFV genomes. ML phylogenetic tree reconstructions and automated subtyping tools placed the newly generated genomes within the South American genotype I (SA I). Our analysis revealed that the YFV genomes from Bahia formed two distinct well-supported phylogenetic clusters that emerged most likely of an introduction from Minas Gerais and Espírito Santo states. Vegetation coverage analysis performed shows predominantly low to medium vegetation coverage in Bahia state. Together, our findings support the hypothesis of two independent YFV SA-I introductions. We also highlighted the effectiveness of the actions taken by epidemiological surveillance team of the state to prevented human cases.


Assuntos
Doenças dos Primatas/virologia , Febre Amarela/veterinária , Vírus da Febre Amarela/genética , Alouatta , Animais , Brasil/epidemiologia , Callithrix , Ecossistema , Genoma Viral , Humanos , Filogenia , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Febre Amarela/transmissão , Vírus da Febre Amarela/classificação
18.
Emerg Microbes Infect ; 9(1): 1824-1834, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32726185

RESUMO

The recent emergence of a coronavirus (SARS-CoV-2), first identified in the Chinese city of Wuhan in December 2019, has had major public health and economic consequences. Although 61,888 confirmed cases were reported in Brazil by 28 April 2020, little is known about the SARS-CoV-2 epidemic in this country. To better understand the recent epidemic in the second most populous state in southeast Brazil - Minas Gerais (MG) - we sequenced 40 complete SARS-CoV-2 genomes from MG cases and examined epidemiological data from three Brazilian states. Both the genome analyses and the geographical distribution of reported cases indicate for multiple independent introductions into MG. Epidemiological estimates of the reproductive number (R) using different data sources and theoretical assumptions suggest the potential for sustained virus transmission despite a reduction in R from the first reported case to the end of April 2020. The estimated date of SARS-CoV-2 introduction into Brazil was consistent with epidemiological data from the first case of a returned traveller from Lombardy, Italy. These findings highlight the nature of the COVID-19 epidemic in MG and reinforce the need for real-time and continued genomic surveillance strategies to better understand and prepare for the epidemic spread of emerging viral pathogens..


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Genoma Viral , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Adulto , Idoso , Brasil/epidemiologia , COVID-19 , Feminino , Geografia , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Sequenciamento Completo do Genoma , Adulto Jovem
19.
Cell Rep ; 30(7): 2275-2283.e7, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075736

RESUMO

Zika virus (ZIKV) has caused an explosive epidemic linked to severe clinical outcomes in the Americas. As of June 2018, 4,929 ZIKV suspected infections and 46 congenital syndrome cases had been reported in Manaus, Amazonas, Brazil. Although Manaus is a key demographic hub in the Amazon region, little is known about the ZIKV epidemic there, in terms of both transmission and viral genetic diversity. Using portable virus genome sequencing, we generated 59 ZIKV genomes in Manaus. Phylogenetic analyses indicated multiple introductions of ZIKV from northeastern Brazil to Manaus. Spatial genomic analysis of virus movement among six areas in Manaus suggested that populous northern neighborhoods acted as sources of virus transmission to other neighborhoods. Our study revealed how the ZIKV epidemic was ignited and maintained within the largest urban metropolis in the Amazon. These results might contribute to improving the public health response to outbreaks in Brazil.


Assuntos
Infecção por Zika virus/virologia , Zika virus/genética , Brasil/epidemiologia , Monitoramento Epidemiológico , Feminino , Genômica/métodos , Humanos , Masculino , Infecção por Zika virus/epidemiologia
20.
PLoS One ; 15(1): e0226098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914137

RESUMO

The chikungunya East/Central/South/Africa virus lineage (CHIKV-ECSA) was first detected in Brazil in the municipality of Feira de Santana (FS) by mid 2014. Following that, a large number of CHIKV cases have been notified in FS, which is the second-most populous city in Bahia state, northeastern Brazil, and plays an important role on the spread to other Brazilian states due to climate conditions and the abundance of competent vectors. To better understand CHIKV dynamics in Bahia state, we generated 5 complete genome sequences from a local outbreak raised in Serraria Brasil, a neighbourhood in FS, by next-generation sequencing using Illumina approach. Phylogenetic reconstructions revealed that the new FS genomes belongs to the ECSA genotype and falls within a single strongly supported monophyletic clade that includes other older CHIKV sequences from the same location, suggesting the persistence of the virus during distinct epidemic seasons. We also performed minor variants analysis and found a small number of SNPs per sample (b_29L and e_45SR = 16 SNPs, c_29SR = 29 and d_45PL and f_45FL = 21 SNPs). Out of the 93 SNPs found, 71 are synonymous, 21 are non-synonymous and one generated a stop codon. Although those mutations are not related to the increase of virus replication and/or infectivity, some SNPs were found in non-structural proteins which may have an effect on viral evasion from the mammal immunological system. These findings reinforce the needing of further studies on those variants and of continued genomic surveillance strategies to track viral adaptations and to monitor CHIKV epidemics for improved public health control.


Assuntos
Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Surtos de Doenças , Genótipo , Características de Residência/estatística & dados numéricos , Classe Social , Adulto , Brasil/epidemiologia , Vírus Chikungunya/classificação , Feminino , Humanos , Masculino , Filogenia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa