Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 697: 108701, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33259795

RESUMO

During cellular respiration, radicals, such as superoxide, are produced, and in a large concentration, they may cause cell damage. To combat this threat, the cell employs the enzyme Cu/Zn Superoxide Dismutase (SOD1), which converts the radical superoxide into molecular oxygen and hydrogen peroxide, through redox reactions. Although this is its main function, recent studies have shown that the SOD1 has other functions that deviates from its original one including activation of nuclear gene transcription or as an RNA binding protein. This comprehensive review looks at the most important aspects of human SOD1 (hSOD1), including the structure, properties, and characteristics as well as transcriptional and post-translational modifications (PTM) that the enzyme can receive and their effects, and its many functions. We also discuss the strategies currently used to analyze it to better understand its participation in diseases linked to hSOD1 including Amyotrophic Lateral Sclerosis (ALS), cancer, and Parkinson.


Assuntos
Antioxidantes/metabolismo , Superóxido Dismutase-1/metabolismo , Sequência de Aminoácidos , Animais , Antioxidantes/química , Saúde , Humanos , Superóxido Dismutase-1/química
2.
Biochim Biophys Acta Gen Subj ; 1868(8): 130634, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788983

RESUMO

Under certain stress conditions, astrocytes operate in aerobic glycolysis, a process controlled by pyruvate dehydrogenase (PDH) inhibition through its E1 α subunit (Pda1) phosphorylation. This supplies lactate to neurons, which save glucose to obtain NADPH to, among other roles, counteract reactive oxygen species. A failure in this metabolic cooperation causes severe damage to neurons. In this work, using humanized Saccharomyces cerevisiae cells in which its endogenous Cu/Zn Superoxide Dismutase (SOD1) was replaced by human ortholog, we investigated the role of human SOD1 (hSOD1) in aerobic glycolysis regulation and its implications to amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. Yeast cells ferment glucose even in the presence of oxygen and switch to respiratory metabolism after glucose exhaustion. However, like cells of SOD1-knockout strain, cells expressing A4V mutant of hSOD1 growing on glucose showed a respiratory phenotype, i.e., low glucose and high oxygen consumptions and low intracellular oxidation levels in response to peroxide stress, contrary to cells expressing wild-type (WT) SOD1 (yeast or human). The A4V mutation in hSOD1 is linked to ALS. In contrast to WT SOD1 strains, PDH activity of both sod1Δ and A4V hSOD1 cells did not change in response to a metabolic shift toward oxidative metabolism, which was associated to lower Pda1 phosphorylation levels under growth on glucose. Taken together, our results suggest that A4V mutant cannot regulate aerobic glycolysis via Pda1 phosphorylation the same way WT hSOD1, which might be linked to problems observed in the motor neurons of ALS patients with the SOD1 A4V mutation.


Assuntos
Esclerose Lateral Amiotrófica , Glicólise , Saccharomyces cerevisiae , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo , Mutação
3.
Epigenetics ; 17(9): 1003-1019, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519616

RESUMO

Adverse experiences in the perinatal period have been associated with the methylation of the human glucocorticoid receptor gene (NR3C1) and long-term diseases. We conducted a systematic review on the association between adversities in the perinatal period and DNA methylation in the 1 F region of the NR3C1 gene in newborns. We explored the MEDLINE, Web of Science, Scopus, Scielo, and Lilacs databases without time or language limitations. Two independent reviewers performed the selection of articles and data extraction. A third participated in the methodological quality assessment and consensus meetings at all stages. Finally, ten studies were selected. Methodological quality was considered moderate in six and low in four. Methylation changes were reported in 41 of the 47 CpG sites of exon 1 F. Six studies addressed maternal conditions during pregnancy: two reported methylation changes at the same sites (CpG 10, 13, 20, 21 and 47), and four at one or more sites from CpG 35 to 39. Four studies addressed neonatal parameters and morbidities: methylation changes at the same sites 4, 8, 10, 16, 25, and 35 were reported in two. Hypermethylation associated with stressful conditions prevailed. Hypomethylation was more often associated with protective conditions (maternal-foetal attachment during pregnancy, breast milk intake, higher birth weight or Apgar). In conclusion, methylation changes in several sites of the 1 F region of the NR3C1 gene in newborns and very young infants were associated with perinatal stress, but more robust and comparable results are needed to corroborate site-specific associations.


Assuntos
Metilação de DNA , Receptores de Glucocorticoides , Éxons , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Processamento de Proteína Pós-Traducional , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa